2675 Winkler Ave #180 Fort Myers, Florida 33901 www.ghd.com

Our ref: 11225022-22

November 6, 2025

Mr. Richard Freeman Calvin, Giordano & Associates, Inc. 1800 Eller Drive, Suite 600 Fort Lauderdale, FL 33316

Wentworth Estates (Treviso Bay) Water Quality Monitoring Report – October 2025

Dear Mr. Freeman:

GHD Services Inc. (GHD) is pleased to present the results of the October 2025 water quality sampling services for Lakes 4, 5, 12, 14, 22, and 32 for Wentworth Esates, located within the Treviso Bay Golf Club.

1. Water Quality Sampling – October 2025

The October 8, 2025, sampling event consisted of the collection of six (6) surface water samples from six (6) different lakes within the Treviso Bay residential community, as identified in Figure 1.

Samples were collected using direct-dip sampling methods. Samples were collected at half the total depth at each sampling location to minimize sediment disruption. Where applicable, samples were collected near the outfall structure/weir, particularly if there is flow over the weir. If the water depth is too shallow near the outfall structure/weir, samples were collected using a long-reach sampling pole from the bank of the lake, to as far into the lake as possible. See Figure 1 for locations of outfall structures/weirs. Of note, there is no visible outfall structure/weir in Lake 5.

Conductivity, dissolved oxygen (DO), pH, and temperature were measured in the field with a calibrated YSI Pro Plus multi-parameter water quality meter. Turbidity was also measured at each location. Surface Water Field Sheets are attached. Field data is summarized in the Table in the Laboratory Data Compliance Memo.

The collected samples were capped, labelled, packed on ice, and transported to Benchmark EnviroAnalytical, Inc., in North Port, Florida. Benchmark EnviroAnalytical, Inc. is certified by the State of Florida and NELAP (National Environmental Laboratory Accreditation Conference). Laboratory analyses were conducted for 5-day biochemical oxygen demand (BOD), total suspended solids (TSS), total nitrogen, nitrogen speciation (ammonia, total Kjeldahl nitrogen (TKN), and nitrate + nitrite), total phosphorus, ortho phosphorus, and chlorophyll-a.

All samples collected during the October 2025 sampling event were prepared and analyzed within the method-required holding times. The laboratory data has been reviewed with respect to authenticity, precision, limits of detection, and accuracy of the data. The laboratory analytical results are summarized in the attached Laboratory Data Compliance Memo and Table 1.

2. Analytical Summary

The October 2025 sampling event represents the third and final analysis for 2025. Laboratory results are displayed visually in the trend graphs enclosed.

All lakes' water levels were relatively normal during the October 2025 sampling event considering the time of year. All sample were collected from the bank of each respective lake as far into the pond as possible. No visual evidence of algae was observed at any sampling location.

It appears that between the prior sampling event in June 2025 and the recent sampling event conducted on October 8, 2025:

- BOD levels at Lake 14 have increased since the previous sampling event and were detected above the practical quantitation limit (PQL). For all other sampling locations, BOD levels remain consistent and were detected between the method detection limit (MDL) and PQL.
- The average chlorophyll-a concentration increased, from 6.01 mg/m³ to 10.24 mg/m³.
- The average concentration of dissolved oxygen (%) slightly decreased, from 73.63% to 70.92%.
- The average concentration of total nitrogen slightly increased, from 0.610 mg/L to 0.646 mg/L.
- The average concentration of total phosphorus remained consistent, from 0.025 mg/L to 0.020 mg/L.
- The average turbidity slightly increased, from 2.68 NTU to 3.86 NTU.
- The average TSS increased, from 2.80 mg/L to 7.60 mg/L.
- The average conductivity increased, from 780.00 μS/cm to 1,183.50 μS/cm.
- The average pH decreased, from 8.10 SU to 7.56 SU.
- The average temperature decreased, from 32.25°C to 29.37°C.

The average pH decreased by about 0.54 SU and the temperature decreased by about 2.88°C. The highest pH was displayed at Lake 22 (8.17 SU) and the lowest was displayed at Lake 5 (7.04 SU). The highest temperature was displayed at Lake 32 (30.86°C), the lowest displayed at Lake 4 (28.17°C).

The BOD concentration displayed at Lake 14 was detected in excess of the PQL (4.54 mg/L). No other sampling location during the October 2025 sampling event resulted in BOD concentrations in exceedance of the PQL. BOD is a measure of oxygen content consumed by bacteria that decomposes organic material. Higher BOD levels generally infer more biological activity and, thus, higher algae levels. In general, BOD levels below 5.0 mg/L are ideal for freshwater lakes to support a healthy dissolved oxygen level within the water and, therefore, a healthy aquatic ecosystem. No sampling location exceeded this standard.

As noted above, no visual evidence of algae was observed at any sampling location. The average chlorophyll-*a* levels have increased since the previous sampling event. Chlorophyll-*a* concentrations increased at Lake 12, Lake 14, Lake 22, and Lake 32 and decreased at Lake 4 and Lake 5. In general, concentrations remain low. In general, chlorophyll-*a* levels below 10.0 mg/m³ are ideal for freshwater lakes to support a healthy ecosystem. One (1) out of the six (6) locations slightly exceeded this standard: Lake 14 (25.2 mg/m³). This value represents an increase in chlorophyll-*a* concentration when compared to the previous June 2025 sampling event (6.27 mg/m³). Chlorophyll-*a* levels appear to display a cyclic trend, with increasing concentrations during the warmer months of the year, and decreasing concentrations in the cooler months, with lows recorded in January/February. GHD expects that the chlorophyll-*a* concentrations will decrease by the next sampling event, scheduled for February 2026.

The highest concentration of DO was observed at Lake 22 (85.5%), and the lowest was at Lake 4 (52.8%). Since the previous sampling event, the DO decreased at Lakes 4, 5, 12, and 14, and increased at Lakes 22 and 32. The action level for dissolved oxygen (%) is defined by the Florida Department of Environmental Protection (FDEP) for the Peninsula and Everglades bioregions as 38%. All sampling locations displayed DO concentrations far above this standard.

Given temperature and DO are inversely related, the concentration of DO is expected to fluctuate throughout the year, with the lakes displaying higher, more abundant concentrations in the colder months, and lower, more scarce concentrations in the warmer months. In addition, higher water levels typically

correspond with higher levels of DO, as there is more movement within and between lakes. GHD expects the concentration of DO to increase between now and the next sampling event.

Sampling location Lake 4 displayed the highest concentration of total nitrogen (0.902 mg/L) and TKN (0.806 mg/L), which is an increase compared to the previous sampling event. The total nitrogen concentration increased at Lakes 4 and 5 and decreased at Lakes 12, 14, 22, and 32. All results are within historical ranges. The TKN concentration trends follow similar patterns as the total nitrogen.

For the current sampling event, the highest concentration of total phosphorus was detected at Lakes 5 and 12 (0.024 I mg/L), which is consistent with the previous sampling event for both locations. All sampling locations displayed consistent trends in total phosphorus, except for at Lake 22, where it decreased.

The concentration of ortho phosphorus has historically fluctuated. The concentration of ortho phosphorus increased at Lakes 4 and 14, remained consistent at Lakes 5, 12, and 22, and decreased at Lake 32.

The highest concentration of TSS was displayed at Lake 14 (12.4 mg/L), which represents an increase in concentration since the previous sampling event. All sampling locations displayed an increasing trend when compared to the previous sampling event. In correspondence, the highest level of turbidity was also recorded at Lake 14 (6.00 NTU), which increased since the previous sampling event. Since the previous sampling event the turbidity increased at all sampling locations, except for at Lake 4, where it decreased.

A Trophic State Index calculation (defined by FAC 62-303.200 and the Water Quality Assessment for the State of Florida 305(b) Report) was used to help classify the quality of water based on each water body's chlorophyll-α, total phosphorous, and total nitrogen concentration. A ratio of total nitrogen to total phosphorus was calculated for each water body to determine general conditions. For this sample event, the breakdown of the sample locations is:

- Nutrient Balanced (10<TN/TP<30) None
- Nitrogen Limited (TN/TP<10) All sampling locations
- Phosphorus Limited (TN/TP>30) None

A TSI value was calculated based on the TN/TP ratio for each location. A TSI value for lakes of 0-59 is "good", a value of 60-69 is "fair", and a value of 70+ is "poor". Based on the results of this sampling event, each sampling location's calculated TSI value is:

Lake 4	Lake 5	Lake 12	Lake 14	Lake 22	Lake 32
49.2	49.9	42.8	56.0	49.2	43.7

As shown above, all sampling locations resulted in TSI values of "good" for the current sampling event, indicating that the chemical composition within the water is balanced.

3. Annual Summary

The table below displayed the averages in parameters over the sampling events conducted in 2025 (February, June, and October 2025) compared to those conducted in 2024 (February, June, and November 2024).

Parameter	Unit	2025 Average	2024 Average	Difference (2025- 2024)
BOD	mg/L	1.89	1.03	0.855
Chlorophyll	mg/m3	7.40	11.07	-3.67
Dissolved oxygen	%	73.92	73.33	0.590
Total nitrogen	mg/L	0.623	0.940	-0.317
Total phosphorus	mg/L	0.020	0.040	-0.020
Ortho phosphorus	mg/L	0.012	0.010	0.002
Total suspended solids	mg/L	4.61	6.90	-2.29
Conductivity	umhos/cm	906.67	775.26	131.41
рН	SU	7.99	8.03	-0.044
Temperature	Deg C	29.09	26.91	2.18
Turbidity	NTU	3.15	4.82	-1.67

As seen in the table above, the average chlorophyll-*a*, total nitrogen, turbidity, and TSS concentration decreased between the 2024 and 2025 events. The average temperature, conductivity, and BOD between 2024 and 2025 increased. The remaining parameters display relatively consistent averages between years. Water quality conditions appear to remain relatively stable when compared to last year's results.

No evidence of algal growth was noted between February 2025 through October 2025. All lakes appear to be chemically balanced and in good health.

4. Conclusions and Recommendations

The TN/TP ratio of each location is nitrogen-limited, which is consistent with historical sampling events. This infers that additional inputs of nitrogen will result in elevated chlorophyll-a concentrations and could potentially lead to algae growth within the water body. As noted above, no evidence of algal growth or blooms was observed at the time of the sampling event.

Water quality conditions within the Lake 14 sampling location appear to have degraded since the previous sampling event. This location displayed elevated levels of BOD and chlorophyll-a, indicating water quality concerns. The concentration of chlorophyll-a exceeded the standard of 10 mg/m³, however, the BOD concentration did not exceed its standard of 5.0 mg/L.

Chlorophyll-a levels appear to display a cyclic trend, with increasing concentrations during the warmer months of the year, with peaks recorded in October, and decreasing concentrations in the cooler months, with lows recorded in January/February. In addition, DO is expected to fluctuate throughout the year, with the lakes displaying a higher DO in the fall and winter, and a lower DO in the spring and summer.

There currently appears to be minor water quality concerns at Lake 14. GHD recommends that lake maintenance inspect this location and treat for algae as needed. There are no other water quality concerns at any of the sampling locations. Due to the apparent cyclic trend identified above for DO and nutrients, GHD recommends continued increased visual investigations by lake maintenance for algal growth during the warmer months of the year.

The next tri-annual sampling event is planned for February 2026. Please contact Jessica Walsh at the email or phone number below if you have questions or need additional information.

Sincerely,

GHD

Jessica Walsh, E.I. Environmental Engineer Jessica.Walsh@ghd.com 239-944-0709

Jessica Walon

Encl: Figure

Table

Trend Graphs

Laboratory Analytical Reports

Surface Water Field Sheets

Data Table

Table 1

Analytical Results Summary Surface Water Quality Monitoring Treviso Bay, Naples, Florida October 2025

Sample Location/Sample ID:										Lak	re 4								
Sample Date:		02/17/20	06/04/20	10/22/20	03/04/21	06/30/21	10/27/21	02/16/22	06/09/22	10/11/22	02/21/23	06/06/23	10/03/23	02/08/24	06/04/24	10/21/24	02/19/25	06/18/25	10/08/25
Field Parameters	Units																		
Total Water Depth	Feet	3	2.7	2.34	1.2	1.8	3.5	NM	NM	NM	NM	NM	NM	4	3	5	4	4	4
Sample Depth	Feet	1.5	1.5	1.5	0.5	1	1.5	1.5	outfall	outfall	1.5	1.5	1.5	2	1.5	2.5	2	2	2
Conductivity, field	umhos/cm	908	1129	514	666	755	646	634	563	448	766	656	582	634	749	418	679	636	1261
Dissolved oxygen (DO), field	mg/L	6.07	4.36	2.78	3.5	3.82	3.99	4.65	4.07	6.3	6.73	4.24	5.45	6.3	4.12	6.01	6.86	4.62	4.1
Dissolved oxygen (DO), field	%	70.6	56.4	34.7	41.7	49.3	50.6	50.8	54.3	80.1	80.7	54.2	68.8	70.7	54.2	74.9	83.7	62.2	52.8
pH, field	s.u.	7.27	8.4	7.79	8.04	7.9	7.59	7.65	8.04	7.27	7.62	7.67	7.55	7.75	7.15	7.85	6.87	8.04	7.41
Temperature, field	Deg C	22.68	29.1	26.8	24.3	28.6	27.5	19.5	30.4	27.7	24.6	29.8	28.3	21	29.5	26.6	25.34	30.97	28.17
Turbidity, field	NTU	1.02	2.33	1.84	2.7	2.91	1.24	1.76	0.54	0.5	0.1	1.36	0.09	1.24	2.47	2.07	3.26	2.89	2.26
Wet Parameters	Units																		
Ammonia-N	mg/L	0.010 I	0.008 U	0.181	0.008 U	0.084	0.083	0.008 U	0.062	0.038	0.008 U	0.008 U	0.008 U	0.008 U	0.061	0.095	0.009 I	0.019 I	0.186
Total kjeldahl nitrogen (TKN)	mg/L	0.651	0.812	1.19	0.87	0.431	0.668	0.588	0.776	0.495	1.12	0.739	0.529	0.633	1.33	0.725	0.51	0.671	0.806
Total nitrogen	mg/L	0.77	0.818	1.23	0.05 U	0.451	0.754	0.695	0.776	0.541	1.2	0.753	0.548	0.689	1.35	0.747	0.544	0.71	0.902
Nitrite/Nitrate	mg/L	0.119	0.006 I	0.043	0.13	0.020 I	0.086	0.107	0.006 U	0.046	0.078	0.014 I	0.019 I	0.056	0.023 I	0.022 I	0.034	0.039	0.096
Ortho phosphorus (Field Filtered)	mg/L	0.039	0.043	0.026	0.008	0.02	0.004 I	0.006 I	0.008	0.013	0.012	0.046	0.043	0.005 I	0.005 I	0.019	0.008	0.004 I	0.012
Total phosphorus	mg/L	0.046	0.045	0.024 I	0.084	0.022 I	0.015 I	0.024 I	0.058	0.041	0.013 I	0.112	0.12	0.026 I	0.013 I	0.020 I	0.013 I	0.026 I	0.020 I
Chlorophyll	mg/m3	4.58	10.4	4.87	18.4	7.73	3.57	2.04	5.13	3.78	3.57	3.11	4.89	2.44	23.2	11.9	11.4	6.65	5.54
Total suspended solids (TSS)	mg/L	1.75 I	3	2.20 I	0.570 U	1.93 I	0.667 I	1.33 I	3	0.570 U	1.60 I	1.76 I	3.33	4	4	2.00 I	3.2	2.8	6.4
Biochemical oxygen demand (total BOD5)	mg/L	1 U	1.0 U	1 U	1.08 I	1 U	1 U	1.77 I	1 U	1.62 I	1 U	1.6 I	1 U	1 U	1 U	1 U	2.19 I	1.26 I	2.69 I

Sample Location/Sample ID:										Lal	ke 5								
Sample Date:		02/17/20	06/04/20	10/22/20	03/04/21	06/30/21	10/27/21	02/16/22	06/09/22	10/11/22	02/21/23	06/06/23	10/03/23	02/08/24	06/04/24	10/21/24	02/19/25	06/18/25	10/08/25
Field Parameters	Units																		
Total Water Depth	Feet	7	7.5	7.5	6.2	NM	4	4	3	3	3	3							
Sample Depth	Feet	1.5	1.5	1.5	1.5	surface	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2	2	1.5	1.5	1.5	1.5
Conductivity, field	umhos/cm	405	630	561	284	389	308	310	311	335	344.4	306.2	278.2	349.2	299.4	299	346	426	1250
Dissolved oxygen (DO), field	mg/L	9.25	4.46	6.72	5.6	4.48	5.6	8.67	5.07	5.3	6.85	3.74	4.12	7.56	4.08	6.44	5.83	5.28	4.63
Dissolved oxygen (DO), field	%	107.9	59.3	83.9	67.5	59.4	72.5	96.5	68.1	67	82.1	50.4	53.1	85.1	54.5	80.6	71.2	72.4	60.5
pH, field	s.u.	7.61	7.78	8.61	8.71	8.26	8.62	8.49	8.37	6.8	6.74	7.5	7.7	8.26	8.14	7.16	7.9	7.34	7.04
Temperature, field	Deg C	22.95	30.1	27.2	25.1	30.2	28.8	20.7	30.8	27.6	24.6	29.8	28.7	21	30.3	26.9	25.45	31.95	29.01
Turbidity, field	NTU	1.36	2.45	3.54	6.43	1.94	4.53	5.34		0.9	0.85	1.34	0.5	0.02	3.32	1.51	1.19	2.28	4.53
Wet Parameters	Units																		
Ammonia-N	mg/L	0.008 U	0.0091	0.030 I	0.008 U	0.053	0.085	0.008 U	0.073	0.032	0.008 U	0.008 U	0.008 U	0.008 U	0.08	0.035	0.014 I	0.055	0.171
Total kjeldahl nitrogen (TKN)	mg/L	0.654	0.75	1.04	0.828	0.638	0.91	1.41	0.954	0.462	0.884	0.707	0.682	0.763	0.974	0.653	0.488	0.586	0.677
Total nitrogen	mg/L	0.654	0.75	1.04	0.828	0.638	0.976	1.41	0.954	0.501	0.892	0.715	0.699	0.775	0.992	0.671	0.504	0.61	0.776
Nitrite/Nitrate	mg/L	0.006 U	0.066	0.006 U	0.006 U	0.039	0.008 I	0.008 I	0.017 I	0.012 I	0.018 I	0.018 I	0.016 I	0.024	0.099				
Ortho phosphorus (Field Filtered)	mg/L	0.024	0.053	0.026	0.007 I	0.002 U	0.02	0.005 I	0.007 I	0.006 I	0.002 U	0.008	0.002 I	0.002 U	0.002 U	0.003 I	0.003 I	0.004 I	0.003 U
Total phosphorus	mg/L	0.044	0.063	0.027 I	0.014 I	0.008 U	0.046	0.009 I	0.033	0.096	0.008 I	0.013 I	0.012 I	0.072	0.024 I	0.025 I	0.013 I	0.025 I	0.024 I
Chlorophyll	mg/m3	6.71	8.71	9.27	6.17	9.17	29.3	14.2	6.8	2.03	1.65	2.68	3.3	1.73	20.8	3.2	2.3	10.2	7.73
Total suspended solids (TSS)	mg/L	5	2.25 I	6.2	4.8	1.00 I	6.67	9.67	1.67 I	0.570 U	3.6	2.22 I	3.6	2.00 I	1.60 I	0.570 U	0.570 U	2.00 I	6.8
Biochemical oxygen demand (total BOD5)	mg/L	1.111	1.0 U	1.49 I	1.11 I	1 U	1.97 I	1.75 I	1.17 I	1 U	1 U	1.34 I	1 U	1 U	1 U	1 U	1 U	1.63 I	1.70 I

Table 1

Analytical Results Summary Surface Water Quality Monitoring Treviso Bay, Naples, Florida October 2025

Sample Location/Sample ID:										Lak	e 12								
Sample Date:		02/17/20	06/04/20	10/22/20	03/04/21	06/30/21	10/27/21	02/16/22	06/09/22	10/11/22	02/21/23	06/06/23	10/03/23	02/08/24	06/04/24	10/21/24	02/19/25	06/18/25	10/08/25
Field Parameters	Units																		
Total Water Depth	Feet	1	1.95	2.3	2	2.24	2	NM	NM	NM	NM	NM	NM	3	3	2	5	3	3
Sample Depth	Feet	overflow	surface	overflow	1.5	1.5	1.5	1.5	outfall	1.5	1.5	1.5	1.5	1.5	1.5	1	2.5	1.5	1.5
Conductivity, field	umhos/cm	959	1382	658	583	817	777	713	769	974	1095	897	846	907	802	1082	1080	1033	1242
Dissolved oxygen (DO), field	mg/L	10.03	5.25	2.69	5.69	8.65	2.84	4.22	1.72	6.77	5.41	7.01	2.5	6.7	3.13	7.89	7.05	5.88	4.98
Dissolved oxygen (DO), field	%	116.7	69	33.1	66.2	40.9	35.5	45.5	61.7	87.5	65.1	93.1	32.5	77.5	44.6	101.8	85.8	81.7	66.9
pH, field	s.u.	7.54	8.31	7.74	8.63	8.65	7.58	7.9	7.97	7.92	8.14	8.08	7.8	8.28	7.93	7.94	8.67	8.15	7.57
Temperature, field	Deg C	22.43	29.2	25.8	23.1	28.1	26.9	19.1	30.4	27.9	24.2	30.1	28.8	22.1	31.6	28.7	25.15	32.64	29.45
Turbidity, field	NTU	1.75	1.46	0.58	5.48	1.32	1.66	8.64	1.86	2.97	1.5	3.34	1.24	2.32	3.12	2.3	2.85	1.45	3.01
Wet Parameters	Units																		
Ammonia-N	mg/L	0.008 U	0.032	0.008 U	0.078	0.073	0.008 U	0.008 U	0.008 U	0.008 U	0.051	0.115	0.008 U	0.012 I	0.029 I				
Total kjeldahl nitrogen (TKN)	mg/L	0.708	0.71	0.927	1.85	0.57	0.446	1.68	1.05	0.802	2.49	0.926	0.6	0.942	1.05	0.752	0.75	0.516	0.495
Total nitrogen	mg/L	0.708	0.71	0.927	1.86	0.57	0.446	1.68	1.05	0.838	2.53	0.932	0.623	0.954	1.05	0.805	0.763	0.525	0.519
Nitrite/Nitrate	mg/L	0.006 U	0.006 U	0.006 U	0.008 I	0.006 U	0.006 U	0.006 U	0.006 U	0.036	0.043	0.006 I	0.023 I	0.012 I	0.006 U	0.053	0.013 I	0.009 I	0.024
Ortho phosphorus (Field Filtered)	mg/L	0.012	0.034	0.005 I	0.002 I	0.002 U	0.002 I	0.002 I	0.016	0.018	0.01	0.015	0.004 I	0.009	0.002 U	0.004 I	0.01	0.002 U	0.005 I
Total phosphorus	mg/L	0.020 I	0.04	0.011 I	0.047	0.008 U	0.019 I	0.020 I	0.061	0.038	0.014 I	0.026 I	0.016 I	0.015 I	0.013 I	0.019 I	0.016 I	0.015 I	0.024 I
Chlorophyll	mg/m3	5.55	5.55	2.19	34.9	10.3	5.44	19.9	5.43	13.7	7.74	4.18	5.46	5.91	1.56	10.4	7.11	1.91	5.21
Total suspended solids (TSS)	mg/L	1.25 I	1.50 I	0.769 I	124	0.570 U	1.00 I	42.7	4.33	6	19	5.25	2.20 I	7.6	2.4	2.8	4.4	1.20 I	4
Biochemical oxygen demand (total BOD5)	mg/L	1 U	1.0 U	1 U	4.07	1 U	1 U	1.62 I	1.01 I	1.05 I	1.36 I	1.4 I	1 U	1 U	1 U	1.04 I	1.70 I	1 U	1.96 I

Sample Location/Sample ID:										Lak	e 14									П
Sample Date:		02/17/20	06/04/20	10/22/20	03/04/21	06/30/21	10/27/21	02/16/22	06/09/22	10/11/22	02/21/23	06/06/23	10/03/23	02/08/24	06/04/24	10/21/24	02/19/25	06/18/25	10/08/25	П
Field Parameters	Units																			П
Total Water Depth	Feet	2.5	2.41	2.81	2.2	1.83	2.3	NM	NM	NM	NM	NM	NM	3	3	4	5	3	3	П
Sample Depth	Feet	1.5	1.5	1.5	1.5	1	1.5	1.5	outfall	1.5	1.5	1.5	1.5	1.5	1.5	2	2.5	1.5	1.5	
Conductivity, field	umhos/cm	14.67	2066	999	967	1223	1119	1032	1041	1384	2049	1898	1721	1753	1712	1609	1421	1470	1043	
Dissolved oxygen (DO), field	mg/L	5.79	4.36	5.45	4.13	4.31	4.92	6.89	5.67	3.74	5.53	6.21	6.44	6.06	3.7	7.45	6.17	6.02	6.16	
Dissolved oxygen (DO), field	%	66.7	57.6	67.8	48.8	54.1	63.7	74.9	74.2	47.7	65.5	84.1	84.2	72	51.2	94.7	65.4	84	81.1	
pH, field	s.u.	7.71	8.33	8.44	8.55	8.28	8.43	8.49	8.53	7.97	8.33	8.18	8.15	8.41	8.23	8.11	8.9	8.54	7.78	
Temperature, field	Deg C	22.04	29.6	26.4	23.7	28.6	28.2	19.4	30.7	27.7	24.6	30.7	29	23.1	32	27.5	25.29	32.96	29.01	
Turbidity, field	NTU	2.07	7.06	3.44	2.83	2.6	3.8	9.41	2.04	2.77	1.58	3.81	3.09	12.3	2.96	4.1	5.18	3.45	6	
Wet Parameters	Units																			
Ammonia-N	mg/L	0.008 U	0.041	0.008 U	0.063	0.019 I	0.008 U	0.008 U	0.016 I	0.008 U	0.064	0.029 I	0.010 I	0.012 I	0.020 I					
Total kjeldahl nitrogen (TKN)	mg/L	0.816	0.926	1.35	0.908	0.75	0.738	1.17	1.24	0.756	1.82	0.819	0.837	0.974	1.15	0.772	0.76	0.684	0.619	
Total nitrogen	mg/L	0.816	0.926	1.35	0.908	0.75	0.738	1.17	1.24	0.766	1.83	0.831	0.86	0.988	1.17	0.787	0.773	0.697	0.632	
Nitrite/Nitrate	mg/L	0.006 U	0.010 I	0.013 I	0.012 I	0.023 I	0.014 I	0.015 I	0.015 I	0.013 I	0.013 I	0.013 I								
Ortho phosphorus (Field Filtered)	mg/L	0.007 I	0.031	0.004 I	0.002 U	0.002 U	0.007 I	0.002 U	0.003 I	0.009	0.002 U	0.01	0.009	0.023	0.004 I	0.007 I	0.01	0.002 U	0.014	
Total phosphorus	mg/L	0.029 I	0.044	0.025 I	0.020 I	0.008 U	0.011 I	0.035	0.041	0.038	0.020 I	0.012 I	0.009 I	0.029 I	0.084	0.020 I	0.016 I	0.014 I	0.015 I	
Chlorophyll	mg/m3	8.51	10.3	11.7	5.95	16	20	9.84	10.2	19.7	7.12	11.6	21.8	19.3	16.7	23.2	8.95	6.27	25.2	
Total suspended solids (TSS)	mg/L	4.5	3.75	7.5	4.4	3.6	6	7	5.33	6.4	19	7.33	3.85	15.2	6.4	5.2	6	4.8	12.4	
Biochemical oxygen demand (total BOD5)	mg/L	1.55 I	1.0 U	2.32 I	1.59 I	1.03 I	1.61 I	1 U	1.81 I	1.69 I	1.98 I	1.75 I	1 U	1.33 I	1 U	1.10 I	2.37 I	1.93 I	4.54	

Analytical Results Summary Surface Water Quality Monitoring Treviso Bay, Naples, Florida October 2025

Sample Location/Sample ID:										Lak	e 22								
Sample Date:		02/17/20	06/04/20	10/22/20	03/04/21	06/30/21	10/27/21	02/16/22	06/09/22	10/11/22	02/21/23	06/06/23	10/03/23	02/08/24	06/04/24	10/21/24	02/19/25	06/18/25	10/08/25
Field Parameters	Units																		
Total Water Depth	Feet	3	2.27	2.74	2.6	3.58	3.5	NM	NM	NM	NM	NM	NM	3	4	4	3	4	2
Sample Depth	Feet	1.5	surface	overflow	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2	2	1.5	2	1
Conductivity, field	umhos/cm	656	1057	453	450	978	462	449	475	766	1007	881	755	732	707	514	571	599	1261
Dissolved oxygen (DO), field	mg/L	8.62	5.96	4.2	5.14	3.83	8.24	6.25	6.06	4.76	6.61	5.02	3.75	8.01	3.16	7.7	6.16	5.71	6.37
Dissolved oxygen (DO), field	%	99.6	52.6	54	61	45.7	105.8	68.9	80.2	61	80.1	63.2	49	91.5	43.2	98.1	75.3	79.5	85.5
pH, field	s.u.	7.73	8.28	8.27	8.76	7.98	8.5	8.38	8.1	8.03	8.52	7.99	7.95	8.64	7.9	8.48	8.85	8.44	8.17
Temperature, field	Deg C	22.42	29.9	26.8	24.4	28.1	28.3	20	30	28.1	24.7	29.7	29	21.7	31.3	27.9	25.47	32.77	29.72
Turbidity, field	NTU	1.17	1.06	1.52	1.38	2.21	1.75	1.77	0.81	1.04	9.39	3.77	6.63	33.3	6.22	2.51	3	3.1	3.62
Wet Parameters	Units																		
Ammonia-N	mg/L	0.008 U	0.008 U	0.026 I	0.008 U	0.008 U	0.036	0.008 U	0.066	0.019 I	0.008 U	0.008 U	0.008 U	0.008 U	0.079	0.039	0.011 I	0.012 I	0.022 I
Total kjeldahl nitrogen (TKN)	mg/L	0.648	1.05	1.23	0.807	0.678	0.499	0.689	0.952	0.578	1.36	0.939	0.656	0.866	1.37	0.562	0.678	0.615	0.606
Total nitrogen	mg/L	0.648	1.05	1.23	0.807	0.678	0.499	0.689	0.952	0.601	1.37	0.939	0.678	0.877	1.38	0.58	0.689	0.625	0.617
Nitrite/Nitrate	mg/L	0.006 U	0.023 I	0.012 I	0.006 U	0.022 I	0.011 I	0.014 I	0.018 I	0.011 I	0.010 I	0.011 I							
Ortho phosphorus (Field Filtered)	mg/L	0.005 I	0.019	0.007 I	0.002 U	0.002 U	0.002 I	0.002 U	0.004 I	0.005 I	0.008	0.008	0.011	0.005 I	0.009	0.005 I	0.011	0.005 I	0.005 I
Total phosphorus	mg/L	0.024 I	0.027 I	0.030 I	0.008 U	0.008 U	0.021 I	0.028 I	0.023 I	0.023 I	0.148	0.014 I	0.014 I	0.016 I	0.042	0.166	0.022 I	0.049	0.020 I
Chlorophyll	mg/m3	4.31	5	6.48	2.34	4.06	3.35	1.81	4.19	2.76	10.9	4.12	10.7	3.5	14.3	8.92	3.88	6.34	9.87
Total suspended solids (TSS)	mg/L	1.00 I	3	2.25 I	1.60 I	0.570 U	1.67 I	0.570 U	1.41 I	1.20 I	34.8	10	5.71	6	9.2	2.4	3.2	4.8	10.4
Biochemical oxygen demand (total BOD5)	mg/L	1 U	3	1	1 U	1 U	1 U	1.29 I	1 U	1 U	1.87 I	1.25 I	1 U	1 U	1 U	1 U	1.29 I	1.09 I	2.82 I

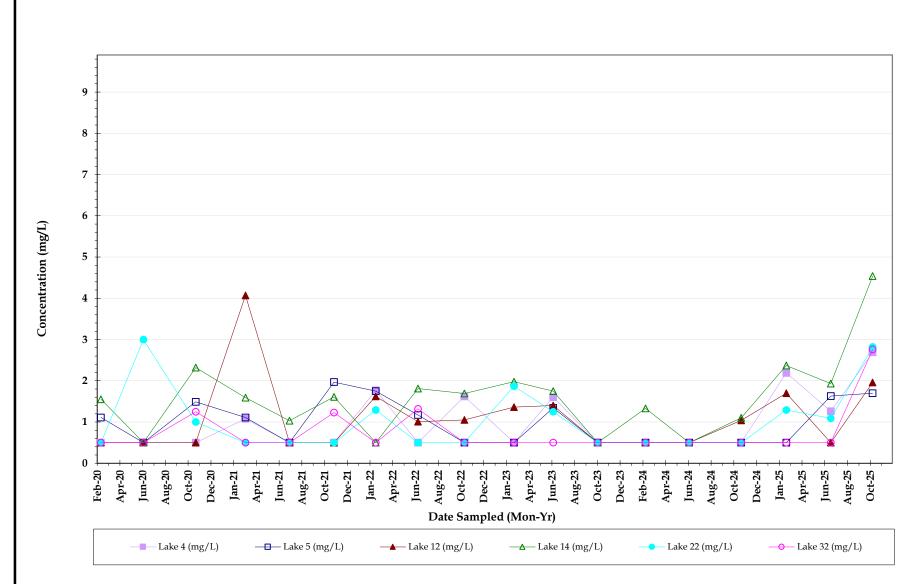
Sample Location/Sample ID:										Lak	e 32									П
Sample Date:		02/17/20	06/04/20	10/22/20	03/04/21	06/30/21	10/27/21	02/16/22	06/09/22	10/11/22	02/21/23	06/06/23	10/03/23	02/08/24	06/04/24	10/21/24	02/19/25	06/18/25	10/08/25	
Field Parameters	Units																			\equiv
Total Water Depth	Feet	3	3.28	3.87	2.3	2.98	1.9	NM	NM	NM	NM	NM	NM	3	3	3	5	3	3	П
Sample Depth	Feet	1.5	1.5	1.5	1.5	1.5	1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.5	1.5	1.5	
Conductivity, field	umhos/cm	426	680	298	296	508	298	289	324	391	459.4	468	43.2	512	491	385	442	516	1044	
Dissolved oxygen (DO), field	mg/L	8.4	4.27	6.44	5.08	5.71	5.54	6.25	1.37	5.55	6.42	4.8	3.58	6.74	4.15	6.93	6.5	4.5	5.88	
Dissolved oxygen (DO), field	%	99.5	56.3	80.3	61	71.8	71.8	69.6	18.1	71.3	77.4	67.1	47	78.1	57.2	90	81.9	62	78.7	
pH, field	s.u.	8.15	8.15	8.16	8.49	8.27	8.72	8.28	7.24	7.82	8.53	7.6	7.96	8.21	7.96	8.19	8.62	8.07	7.38	
Temperature, field	Deg C	23.8	29.7	27	24.7	29.1	28.7	20.5	29.8	28.4	24.6	30.4	29.5	22.5	31.8	28.8	27.15	32.21	30.86	
Turbidity, field	NTU	0.47	2.75	3.31	9.56	3.28	3.18	1.62	1.71	0.54	9.71	2.54	4.05	1.24	2.92	2.84	2.07	2.88	3.74	
Wet Parameters	Units																			
Ammonia-N	mg/L	0.008 U	0.008 U	0.045	0.008 U	0.008 U	0.028 I	0.008 U	0.094	0.017 I	0.008 U	0.008 U	0.008 U	0.027 I	0.045	0.056	0.012 I	0.029 I	0.024 I	
Total kjeldahl nitrogen (TKN)	mg/L	0.483	0.897	1.65	0.791	0.639	0.05 U	0.514	0.872	0.573	0.934	0.687	0.691	0.813	1.14	1.11	0.382	0.479	0.415	
Total nitrogen	mg/L	0.483	0.897	1.67	0.791	0.639	0.05 U	0.514	0.872	0.813	0.941	0.696	0.712	0.845	1.15	1.17	0.4	0.494	0.43	
Nitrite/Nitrate	mg/L	0.006 U	0.006 U	0.018 I	0.006 U	0.24	0.007 I	0.009 I	0.021 I	0.032	0.011 I	0.059	0.018 I	0.015 I	0.015 I					
Ortho phosphorus (Field Filtered)	mg/L	0.018	0.035	0.008	0.002 I	0.002 U	0.008	0.002 U	0.007 I	0.008	0.002 U	0.01	0.006 I	0.074	0.002 U	0.006 I	0.006 I	0.008	0.004 I	
Total phosphorus	mg/L	0.022 I	0.058	0.041	0.010 I	0.013 I	0.014 I	0.027 I	0.044	0.016 I	0.012 I	0.012 I	0.013 I	0.083	0.027 I	0.106	0.010 I	0.021 I	0.015 I	
Chlorophyll	mg/m3	2	7.08	7.29	3.73	11.8	16.1	2.54	7.42	3.26	1.96	4.8	9.47	4.35	19.5	8.32	2.01	4.7	7.88	
Total suspended solids (TSS)	mg/L	0.750 I	5.25	4	1.20 I	3.4	3.67	2.67	3.67	0.570 U	1.60 I	4.85	2.55	25.2	2.8	3.2	3.2	1.20 I	5.6	
Biochemical oxygen demand (total BOD5)	mg/L	1 U	1.0 U	1.25 I	1 U	1 U	1.23 I	1 U	1.32 I	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2.76 I	

Notes:

- U Not detected at the associated reporting limit
- Reported value is between method detection limit and the practical quantitation limit
- NS Not sampled during noted event
- DO values at or above 100% are possible super-saturation conditions due to high water temperatures and/or high volume of algae.
- NM Not Measured

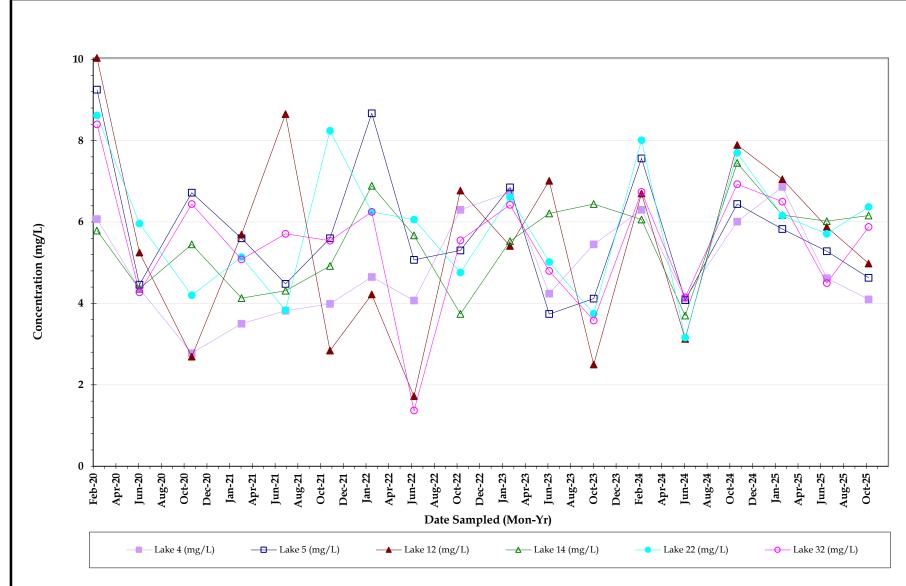
Figure

NOTE: LAKE 5 DOES NOT HAVE AN ABOVE WATER LEVEL OUTFALL STRUCTURE/WEIR.

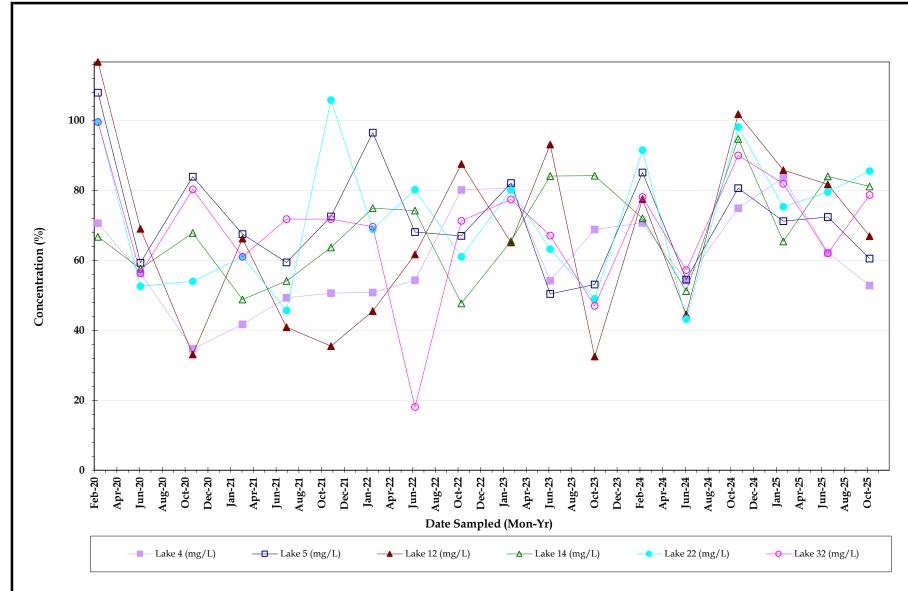

WATER QUALITY SAMPLING REPORT LAKES 4, 5, 12, 14, 22, AND 32 - TREVISO BAY NAPLES, COLLIER COUNTY, FLORIDA 11225022-01

30-June-21

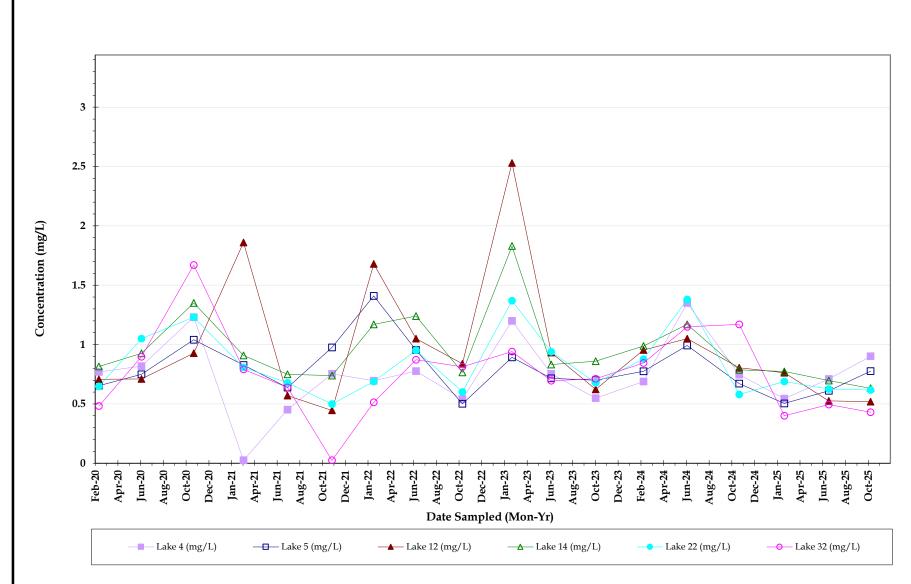
SAMPLE LOCATION MAP


FIGURE NO. 1

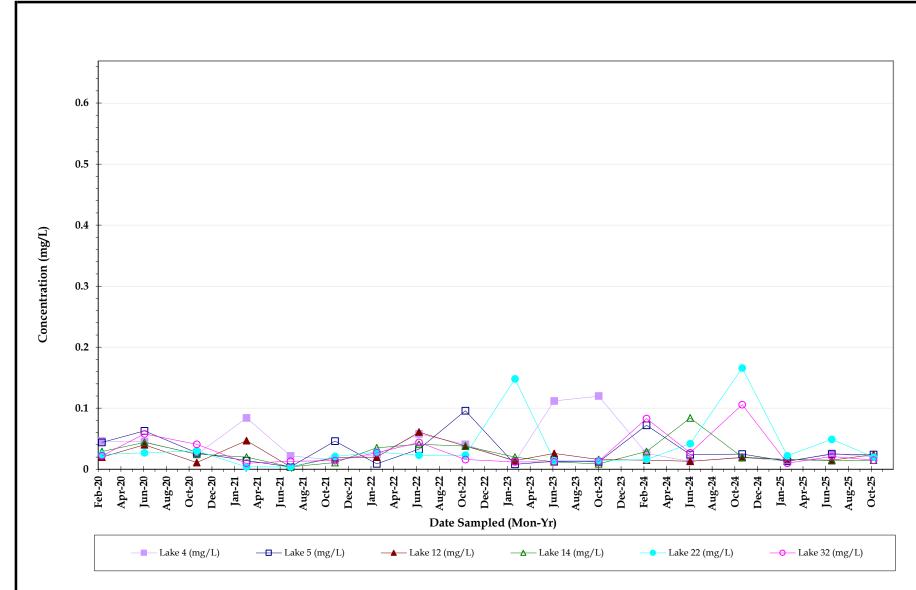
Trend Graphs



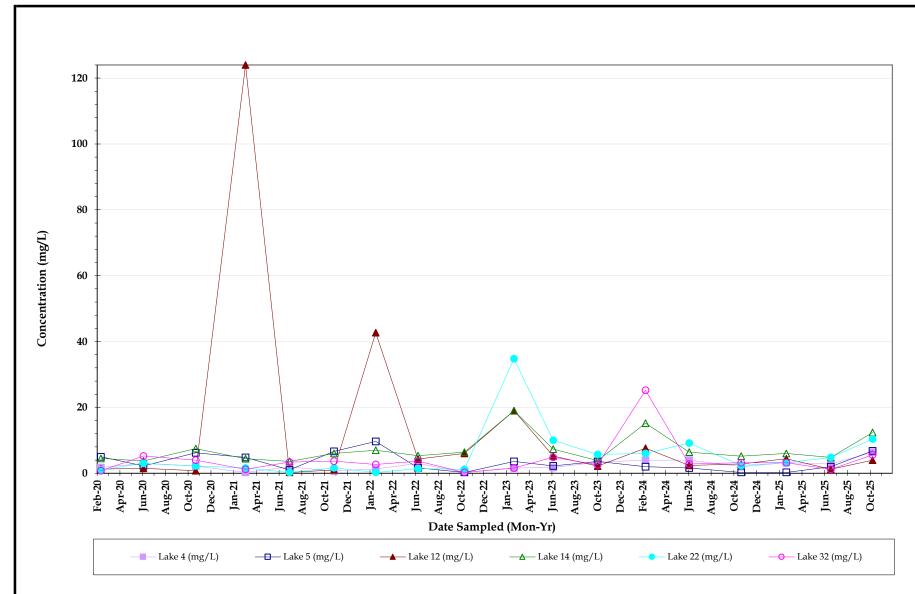
Biochemical Oxygen Demand



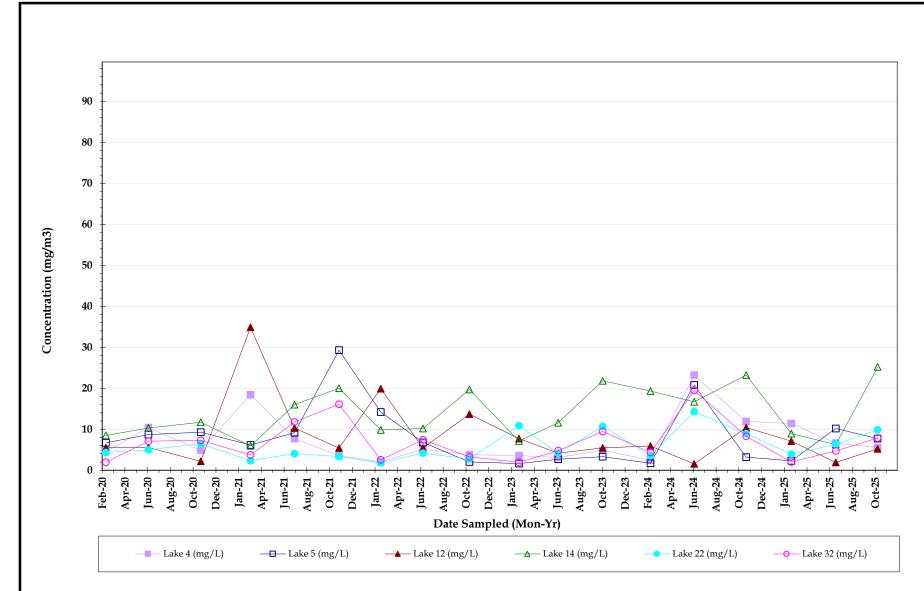
Dissolved Oxygen (mg/L)



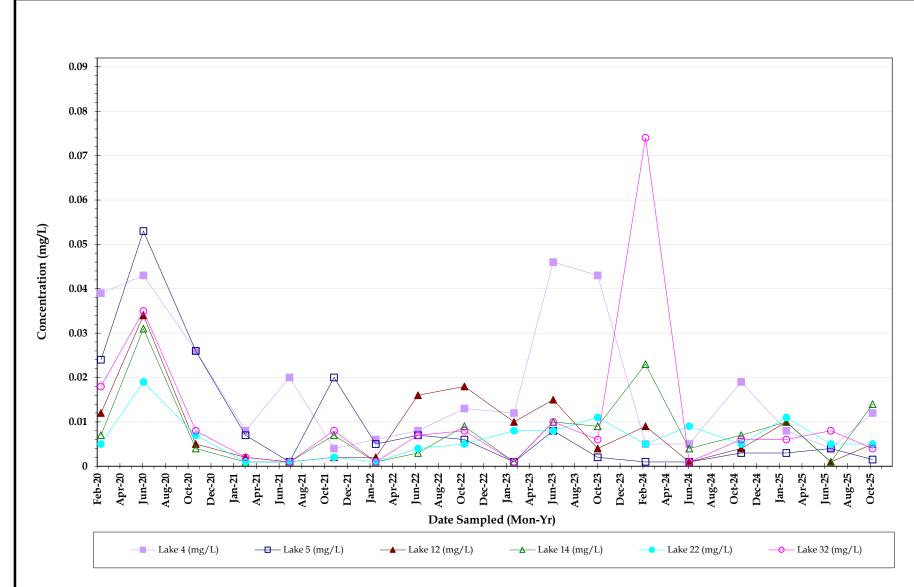
Dissolved Oxygen (%)



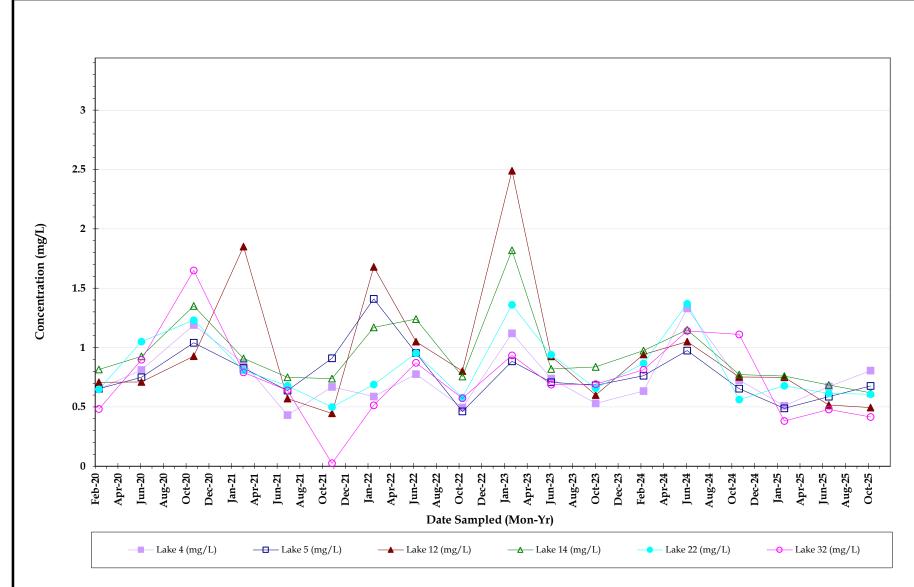
Total Nitrogen



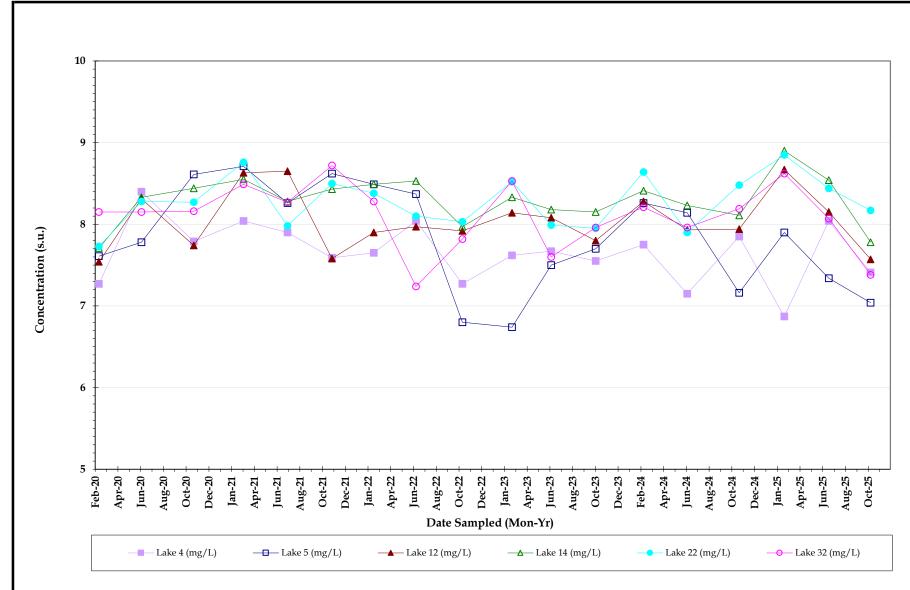
Total Phosphorus



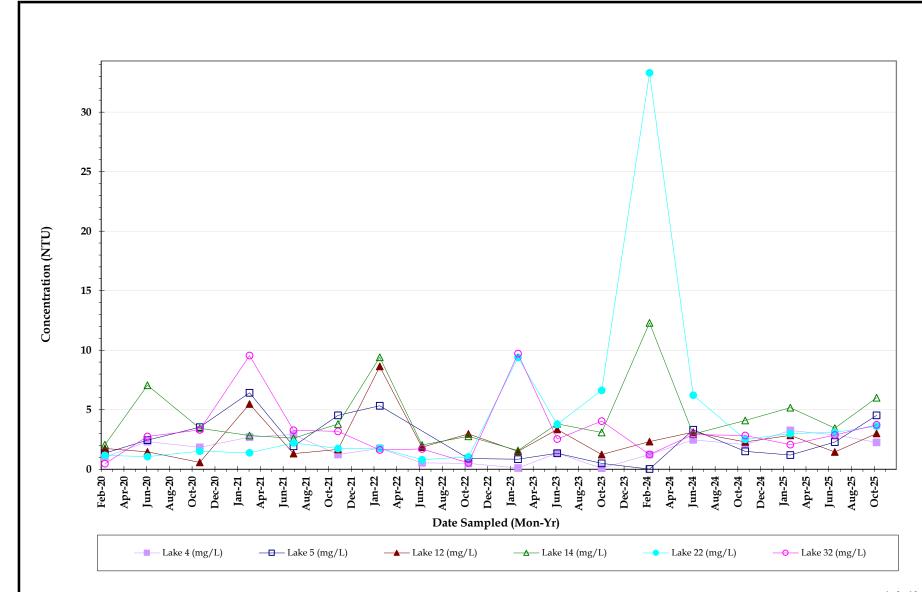
Total Suspended Solids



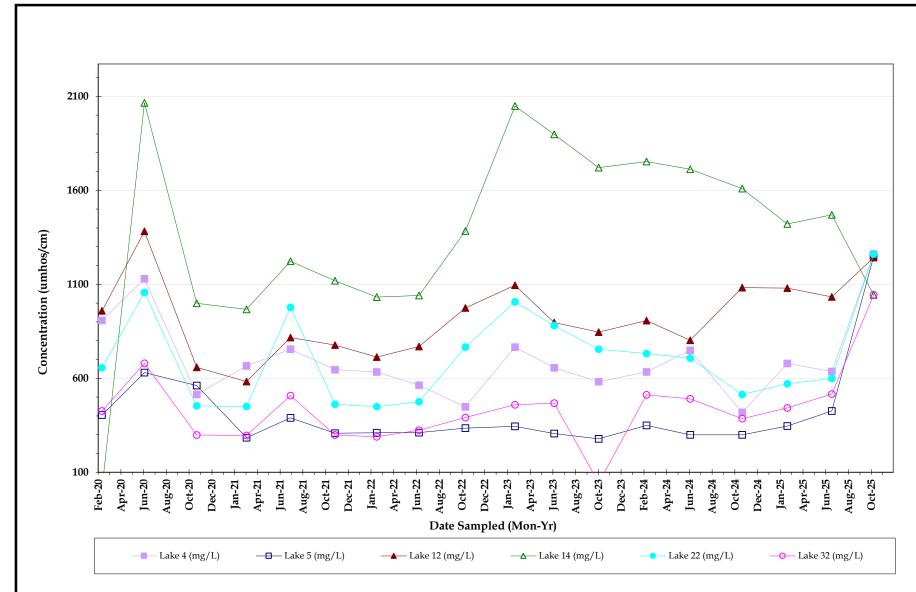
Chlorophyll a



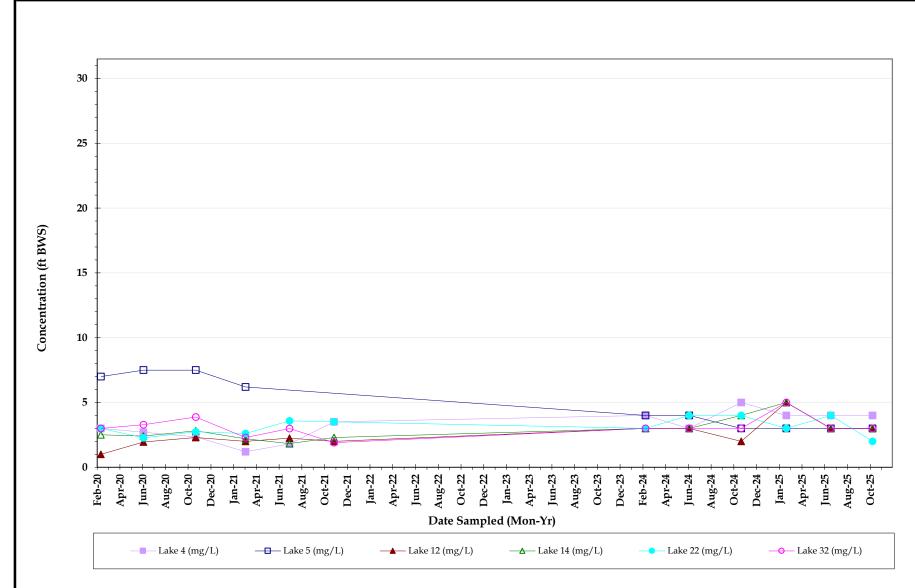
Orthophosphate



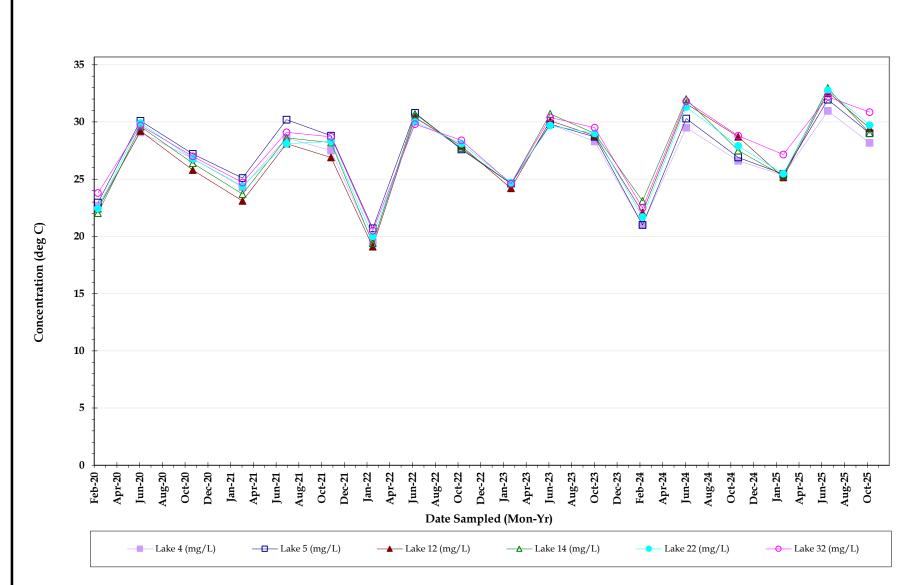
Total kjeldahl nitrogen (TKN)

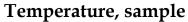


pH, Field



Turbidity




Conductivity

Water Depth

ANALYTICAL TEST REPORT

THESE RESULTS MEET NELAC STANDARDS

Submission Number: 25100510

G H D Services, Inc.

2675 Winkler Ave., Ste.180

Fort Myers, FL 33901

Project Name:

TREVISO BAY WQM

Date Received:

10/09/2025

Time Received:

15:43

Submission Number:

25100510

Sample Number: Sample Description:

001

LAKE 5

Sample Date:

10/08/2025

Sample Time:

09:05

Sample Method:

Grab

Parameter	Result	Units	MDL	PQL	Procedure	Analysis Date/Time	Analyst
AMMONIA NITROGEN	0.171	MG/L	800.0	0.032	350.1	10/20/2025 13:06	KT/LM
TOTAL KJELDAHL NITROGEN	0.677	MG/L	0.05	0.20	351.2	10/14/2025 13:18	JS
ORTHO PHOSPHORUS AS P	0.003 U	MG/L	0.003	0.012	365.3	10/09/2025 16:44	LM
TOTAL PHOSPHORUS AS P	0.024 I	MG/L	800.0	0.032	365.3	10/10/2025 15:37	KT/LM
CHLOROPHYLL A	7.73	MG/M3	0.25	1.00	445.0	10/15/2025 10:50	KG
TOTAL SUSPENDED SOLIDS	6.80	MG/L	0.570	2.280	SM2540D	10/13/2025 09:51	IR
BIOCHEMICAL OXYGEN DEMAND	1.70	MG/L	1	4	SM5210B	10/09/2025 16:53	LD/LD
NITRATE+NITRITE AS N	0.099	MG/L	0.006	0.024	SYSTEA EASY	10/13/2025 13:03	SN
TOTAL NITROGEN	0.776	MG/L	0.05	0.20	SYSTEA+351	10/14/2025 13:18	JS/SN

Submission Number:

25100510

Sample Number:

002

Sample Description:

LAKE 4

Sample Date:

10/08/2025

Sample Time:

09:25

Sample Method:

Grab

Parameter	Result	Units	MDL	PQL	Procedure	Analysis Date/Time	Analyst
AMMONIA NITROGEN	0.186	MG/L	800.0	0.032	350.1	10/20/2025 13:10	KT/LM
TOTAL KJELDAHL NITROGEN	0.806	MG/L	0.05	0.20	351.2	10/14/2025 13:25	JS
ORTHO PHOSPHORUS AS P	0.012	MG/L	0.003	0.012	365.3	10/09/2025 17:55	LM
TOTAL PHOSPHORUS AS P	0.020	MG/L	0.008	0.032	365.3	10/10/2025 15:38	KT/LM
CHLOROPHYLL A	5.54	MG/M3	0.25	1.00	445.0	10/15/2025 10:50	KG
TOTAL SUSPENDED SOLIDS	6.40	MG/L	0.570	2,280	SM2540D	10/13/2025 09;51	IR
BIOCHEMICAL OXYGEN DEMAND	2.69	MG/L	1	4	SM5210B	10/09/2025 16:53	LD/LD
NITRATE+NITRITE AS N	0.096	MG/L	0.006	0.024	SYSTEA EASY	10/13/2025 14:33	SN
TOTAL NITROGEN	0.902	MG/L	0.05	0.20	SYSTEA+351	10/14/2025 13:25	JS/SN

Submission Number:

25100510

Sample Number:

003

Sample Description:

LAKE 12

Sample Date:

10/08/2025

Sample Time:

09:50

Sample Method:

Grab

Parameter	Result	Units	MDL	PQL	Procedure	Analysis Date/Time	Analyst
AMMONIA NITROGEN	0.0291	MG/L	0.008	0.032	350.1	10/20/2025 13:11	KT/LM
TOTAL KJELDAHL NITROGEN	0.495	MG/L	0.05	0.20	351,2	10/14/2025 13:26	JS
ORTHO PHOSPHORUS AS P	0.005 l	MG/L	0.003	0.012	365.3	10/09/2025 17:57	LM
TOTAL PHOSPHORUS AS P	0.024	MG/L	800.0	0.032	365,3	10/10/2025 15:39	KT/LM
CHLOROPHYLL A	5.21	MG/M3	0.25	1.00	445.0	10/15/2025 10:50	KG
TOTAL SUSPENDED SOLIDS	4.00	MG/L	0.570	2.280	SM2540D	10/13/2025 09:51	IR
BIOCHEMICAL OXYGEN DEMAND	1.96 i	MG/L	1	4	SM5210B	10/09/2025 16:53	LD/LD
NITRATE+NITRITE AS N	0.024	MG/L	0.006	• 0.024	SYSTEA EASY	10/13/2025 14:41	SN
TOTAL NITROGEN	0.519	MG/L	0.05	0.20	SYSTEA+351	10/14/2025 13:26	JS/SN

Submission Number:

25100510

Sample Number:

004

Sample Description:

LAKE 14

Sample Date:

10/08/2025

Sample Time:

10:20

Sample Method:

Grab

Result	Units	MDL	PQL	Procedure	Analysis Date/Time	Analyst
0.020	MG/L	0.008	0.032	350.1	10/20/2025 13:13	KT/LM
0.619	MG/L	0.05	0.20	351.2	10/14/2025 13:28	JS
0.014	MG/L	0.003	0.012	365.3	10/09/2025 17:58	LM
0.015 I	MG/L	0.008	0.032	365.3	10/10/2025 15:40	KT/LM
25.2	MG/M3	0.25	1.00	445.0	10/15/2025 10:50	KG
12.4	MG/L	0.570	2.280	SM2540D	10/13/2025 09:51	IR
4.54	MG/L	1	4	SM5210B	10/09/2025 16:53	LD/LD
0.013 I	MG/L	0.006	0.024	SYSTEA EASY	10/13/2025 13:05	SN
0.632	MG/L	0.05	0.20	SYSTEA+351	10/14/2025 13:28	JS/SN
	0.020 0.619 0.014 0.015 25.2 12.4 4.54 0.013	0.020 l MG/L 0.619 MG/L 0.014 MG/L 0.015 l MG/L 25.2 MG/M3 12.4 MG/L 4.54 MG/L 0.013 l MG/L	0.020 l MG/L 0.008 0.619 MG/L 0.05 0.014 MG/L 0.003 0.015 l MG/L 0.008 25.2 MG/M3 0.25 12.4 MG/L 0.570 4.54 MG/L 1 0.013 l MG/L 0.006	0.020 I MG/L 0.008 0.032 0.619 MG/L 0.05 0.20 0.014 MG/L 0.003 0.012 0.015 I MG/L 0.008 0.032 25.2 MG/M3 0.25 1.00 12.4 MG/L 0.570 2.280 4.54 MG/L 1 4 0.013 I MG/L 0.006 0.024	0.020 I MG/L 0.008 0.032 350.1 0.619 MG/L 0.05 0.20 351.2 0.014 MG/L 0.003 0.012 365.3 0.015 I MG/L 0.008 0.032 365.3 25.2 MG/M3 0.25 1.00 445.0 12.4 MG/L 0.570 2.280 SM2540D 4.54 MG/L 1 4 SM5210B 0.013 I MG/L 0.006 0.024 SYSTEA EASY	Notes NADE PGL Procedure Date/Time 0.020 I MG/L 0.008 0.032 350.1 10/20/2025 13:13 0.619 MG/L 0.05 0.20 351.2 10/14/2025 13:28 0.014 MG/L 0.003 0.012 365.3 10/09/2025 17:58 0.015 I MG/L 0.008 0.032 365.3 10/10/2025 15:40 25.2 MG/M3 0.25 1.00 445.0 10/15/2025 10:50 12.4 MG/L 0.570 2.280 SM2540D 10/13/2025 09:51 4.54 MG/L 1 4 SM5210B 10/09/2025 16:53 0.013 I MG/L 0.006 0.024 SYSTEA EASY 10/13/2025 13:05

Submission Number:

25100510

Sample Number:

005

Sample Description:

LAKE 22

Sample Date:

10/08/2025

Sample Time:

10:50

Sample Method:

Grab

Parameter	Result	Units	MDL	PQL	Procedure	Analysis Date/Time	Analyst
AMMONIA NITROGEN	0.022 I	MG/L	800.0	0.032	350.1	10/20/2025 13:15	KT/LM
TOTAL KJELDAHL NITROGEN	0.606	MG/L	0.05	0.20	351,2	10/14/2025 13:29	JS
ORTHO PHOSPHORUS AS P	0.005 I	MG/L	0.003	0.012	365,3	10/09/2025 17:59	LM
TOTAL PHOSPHORUS AS P	0.0201	MG/L	0.008	0.032	365.3	10/10/2025 15:41	KT/LM
CHLOROPHYLL A	9.87	MG/M3	0.25	1.00	445.0	10/15/2025 10:50	KG
TOTAL SUSPENDED SOLIDS	10.4	MG/L	0.570	2.280	SM2540D	10/13/2025 09:51	IR
BIOCHEMICAL OXYGEN DEMAND	2.82 I	MG/L	1	4	SM5210B	10/09/2025 16:53	LD/LD

- EnviroAnalytical, Inc.

NITRATE+NITRITE AS N 0.0111 MG/L 0.006 0.024 SYSTEA EASY 10/13/2025 13:06 TOTAL NITROGEN 0.617 MG/L 0.05 0.20 SYSTEA+351 10/14/2025 13:29

Submission Number:

25100510

Sample Number:

006

Sample Description:

LAKE 32

Sample Date:

10/08/2025

SN

JS/SN

Sample Time:

11:20

Sample Method:

Grab

Parameter	Result	Units	MDL	PQL	Procedure	Analysis Date/Time	Analyst
AMMONIA NITROGEN	0.024	MG/L	0.008	0.032	350.1	10/20/2025 13:17	KT/LM
TOTAL KJELDAHL NITROGEN	0,415	MG/L	0.05	0.20	351.2	10/14/2025 13:31	JS
ORTHO PHOSPHORUS AS P	0.004	MG/L	0.003	0.012	365.3	10/09/2025 18:01	LM
TOTAL PHOSPHORUS AS P	0.015 i	MG/L	800.0	0.032	365.3	10/10/2025 15:42	KT/LM
CHLOROPHYLL A	7.88	MG/M3	0.25	1.00	445.0	10/15/2025 10:50	KG
TOTAL SUSPENDED SOLIDS	5.60	MG/L	0.570	2.280	SM2540D	10/13/2025 09:51	IR
BIOCHEMICAL OXYGEN DEMAND	2.76	MG/L	1	4	SM5210B	10/09/2025 16:53	LD/LD
NITRATE+NITRITE AS N	0.015 I	MG/L	0.006	0.024	SYSTEA EASY	10/13/2025 13:06	SN
TOTAL NITROGEN	0.430	MG/L	0.05	0.20	SYSTEA+351	10/14/2025 13:31	JS/SN

Ken W Lepoes

10/22/2025

Date

Dr. Dale D. Dixon Haley Richardson Laboratory Director

QC Manager / Leah Lepore

QC Officer

DATA QUALIFIERS THAT MAY APPLY:

- A = Value reported is an average of two or more determinations.
- B = Results based upon colony counts outside the ideal range.

 H = Value based on field kit determination. Results may not be accurate.
- i = Reported value is between the laboratory MDL and the PQL.

- J1 = Estimated value. Surrogate recovery limits exceeded.
 J2 = Estimated value. No quality control criteria exists for component.
 J3 = Estimated value. Quality control criteria for precision or accuracy not met.
 J4 = Estimated value. Sample matrix interference suspected.
- J5 = Estimated value. Data questionable due to improper lab or field protocols.
- K = Off-scale low. Value is known to be < the value reported.

 L = Off-scale high. Value is known to be > the value reported.
- N = Presumptive evidence of presence of material.
- O = Sampled, but analysis lost or not performed.
- Q = Sample held beyond accepted hold time.

NOTES:

MBAS calculated as LAS; molecular weight = 340.

ND = Not detected at or above the adjusted reporting limit.

G1 = Accuracy standard does not meet method control limits, but does meet lab control limits that are in agreement with USEPA generated data. USEPA letter available upon request. G2 = Accuracy standard exceeds acceptable control limits. Duplicate and spike values are within control limits. Reported data are usable.

For questions or comments regarding these results, please contact us at (941) 723-9986. Results relate only to the samples.

- $T \simeq \mbox{Value}$ reported is < MDL. Reported for informational purposes only and shall not be used in statistical analysis.
- U = Analyte analyzed but not detected at the value indicated.
- V = Analyte detected in sample and method blank. Results for this analyte in associated samples may be biased high. Standard, Duplicate and Spike values are within control limits. Reported data are usable.
- Y = Analysis performed on an improperly preserved sample. Data may be inaccurate.
- Z = Too many colonies were present (TNTC). The numeric value represents the filtration volume. Partial review for historically established concentration ranges.
 Partial rejected and should not be used. Some or all of QC data were outside criteria, and
- the presence or absence of the analyte cannot be determined from the data.
- = Not reported due to interference.
- Oil & Grease If client does not send sufficient sample quantity for spike evaluation surface water samples are supplied by the laboratory.

COMMENTS:

Chlorophyll a was lab filtered at E85086 on 10/9/25 at 08;27

Laboratory Submission# Kit Shipped to client via UPS Standard in 1 large cooler *Container Type" is used to indicate whether the container is plastic (P) or glass (G).

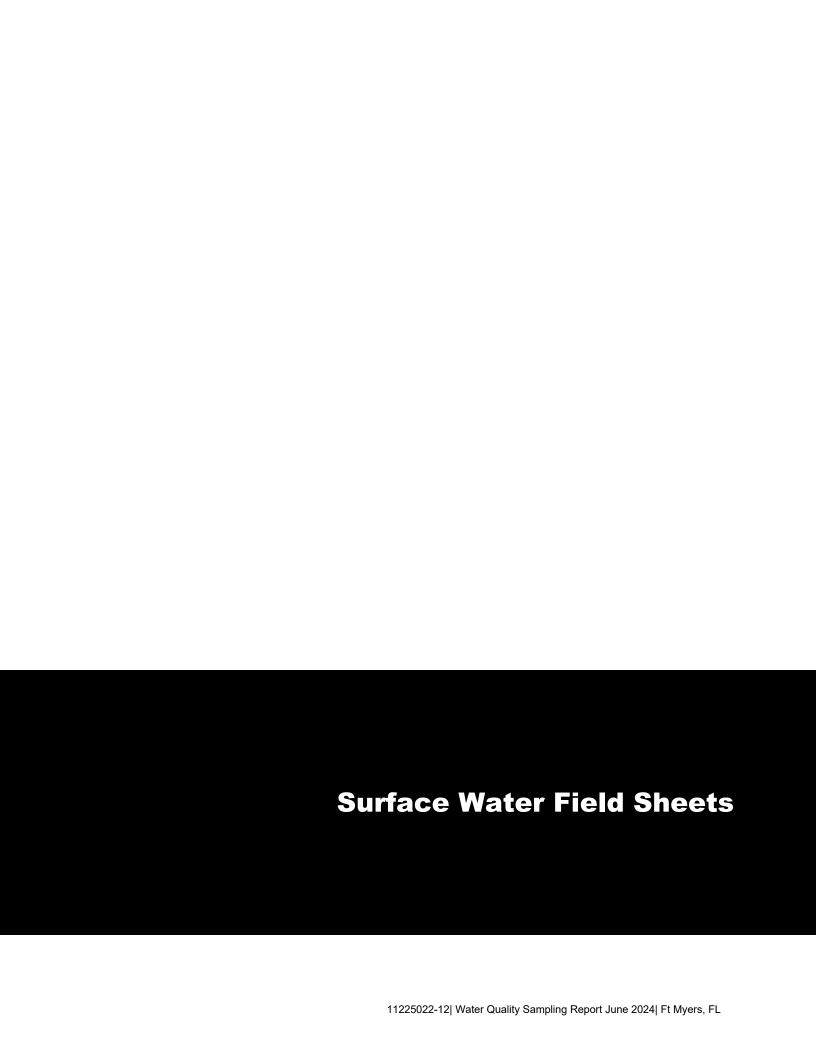
Sample and the entreperated or sheed in wet its after collection. The temporature during storage should be less than or equal to 6°C (42.8°F).

Sample and HNO, do not have expiration dates per the manufacturer. Mare bottles are pre-preserved at manufacturing stage. 40mL visits are pre-preserved at manufacturing stage. 5 **١** C ب 1503 tessica o water@gne).com Time: Time; fittered & BEAS Chlorophyll a (445.0) 1 x 500mL Opaque Plastic 10/8/25 Unique bottle ID 1D 1000 **20**名 (名 Plain 25100510 Date: Date: pH <2: g BEA Temperature: 1,7 C Laboratory Sample Acceptability: Parameters. Preservative⁴. Container Ivpe³ / Total # of Containers = 24 Erik isern (239) 215-3914 Shannon Tucker 239-210-8653 Email EDD Reports to: Leenner Haydon (Comor Haydon) 1 x 1/2 Pint Plastic Unique bottle ID 1C Lab Filtered) Ortho-Phos . Plain Laboratory Submission #: ٠ sample was a gaib (G) or whether it was a composite (C). he sample is being disclaraged to drinking water (DV), groundwater (GW), surface water (SW), fresh surface water (FSW), saline surface water (FSW), soil, sediment (SDMAT), or sindge (SLDG) GHD Services, Inc. (HSA ENG) BOD5 (SM5210B) 1 x 2 Quart Plastic Unique bottle ID 1B TSS (SM2540D) Plain 500 225 のふて 2675 Winkler Ave. Suite 180 1020 000 Received By & Affiliation:
(Print & Sign) Sign) 050 Received By & Affiliation: (Print & Sign) Erik Isem (239) 215-3914 Received By & Affiliation. (Print & Sign) Received By & Affiliation: (Print & Sign) Beeived Bysk Aff Ft. Myers Fl 33901 RATO-OFFICE S Profile: 840, QC Report Each bords has a shed identifying sample ID, premeasured preservative contained in the bottle, sample type, cited ID, and parameters for analysis.
The divolvery information should be state or collection, with permanent black tink close and time of collection, sampler's name or initials, and may find mumber or ID. All bottless not consisting preservative may be inseed with appropriate sample prior to collection.
The client is responsible for documentation of its exampling over. Please note special sampling overns on the sample custody form.
Sample kit has been created by EEA using new, certified bottles unless otherwise noted. (KN (351.2) NH₃ (350.1) NO3-NO₂ (System easy) TP (365.3) T-N (Calc.) 1.1mL 1:4 H₂SO₄ pH<2 g/ Lot # 25-09 Unique bottle ID 1A 1 x 1/2 Pint Plastic W. 52 to 0 Client: Time: EA Fime: Time: Date/Time: Date/Time; Date/Time; Date/Time: Date/Time Date/Time 200 20/8/01 56/0/01 (941) 723-9986 / (800) 736-9986 (941) 723-6061-fax Sample Temperature checked upon receipt at Sample Matrix² BEA with Temperature Gun ID #258 ΝS SW N.S SW SΚ S.W Date; Sample Type¹ Benchmark EA, Inc. Grap Grab Grab Grab Grab Grap Palmetto, FL 34221 Chain of Custody Form: Treviso Lakes WQM 1711 12th St. East PO# 340-023264 12119/12/82 アエロ 328 Sample Temperature checked upon receipt at BEAS with Temperature Gun ID #7 Station Relinquished By & Affiliation:
(Print & Sign) Nolyed BAILE. 1001 Corporate Avenue, Suite 102 North Port, FL 34289 Project Number: 11225022-09 (941) 625-3137 / (800) 736-9986 Benchmark EA South Relinquished By & Affiliation: (Print & Sign) Relinquished By & Affiliation: (Print & Sign) 200 20556 52 Collector & Affiliation: (Print & Sign) (941) 423-7336 fax 2 ake

NELAP Certification #E84167

QC REPORT

25100510 Submission Number: Project Name:


TREVISO BAY WOM

Project Name:	Ā. Ā	I KEVISO BAY WQM									
SUBMISSION NUMBER	SAMPLE	МЕТНОБ	ANALYTE	ANALYSIS DATE/TIME	QC FLAG	QC VALUE	SAMPLE RESULT	LR RESULT	LR %RSD	SPK RESULT	STD-SPK %REC
25100567 - 005	824500	350.1	AMMONIA NITROGEN	10/20/2025 15:24	LR		0.045	0.048	4.14		
		350.1	AMMONIA NITROGEN	10/20/2025 16:26	MB		0.000				
25100511 - 007	824394	350.1	AMMONIA NITROGEN	10/20/2025 13:26	SPK	1.00	0.000			0.971	97.1
		350.1	AMMONIA NITROGEN	10/20/2025 17:34	STD	1.00	1.020				102.0
25100462 - 001	824261	351.2	TOTAL KJELDAHL NITROGEN	10/14/2025 12:35	H		42.800	43.900	1.75		
		351.2	TOTAL KJELDAHL NITROGEN	10/14/2025 12:23	MB		0.000				
25100464 - 001	824265	351.2	TOTAL KJELDAHL NITROGEN	10/14/2025 12:32	SPK	2.00	0.910			2.820	95.3
		351.2	TOTAL KJELDAHL NITROGEN	10/14/2025 16:07	STD	2.50	2.580				103.0
25100510 - 001	824382	365.3	ORTHO PHOSPHORUS AS P	10/09/2025 17:44	H		0.000	0.000	00.0		
		365.3	ORTHO PHOSPHORUS AS P	10/09/2025 17:45	MB		0.000				
25100511 - 007	824394	365.3	ORTHO PHOSPHORUS AS P	10/09/2025 17:52	SPK	0.20	0.000			0.191	95.7
		365.3	ORTHO PHOSPHORUS AS P	10/09/2025 17:47	STD	0.20	0.182				91.1
25100488 - 002	824302	365.3	TOTAL PHOSPHORUS AS P	10/10/2025 16:25	R.		1.950	2.460	2.02		
		365.3	TOTAL PHOSPHORUS AS P	10/10/2025 15:19	MB		0.000				
25100486 - 002	824299	365.3	TOTAL PHOSPHORUS AS P	10/10/2025 15:49	SPK	0.20	0.282			0.486	102.0
		365.3	TOTAL PHOSPHORUS AS P	10/10/2025 15:35	STD	0.20	0.181				90.5
25100510 - 001	824382	445.0	CHLOROPHYLL A	10/15/2025 10:50	H		7.729	7.140	5.63		
		445.0	CHLOROPHYLL A	10/15/2025 10:50	MB		0.000				
		445.0	CHLOROPHYLL A	10/15/2025 10:50	STD	58.44	59,928				102.6
25100543 - 001	824447	SM2540D	TOTAL SUSPENDED SOLIDS	10/13/2025 09:51	꿈		268.000	268.000	0.00		
		SM2540D	TOTAL SUSPENDED SOLIDS	10/13/2025 09:51	MB		0.000				
		SM2540D	TOTAL SUSPENDED SOLIDS	10/13/2025 09:51	STD	825.00	804.000				37.5
25100478 - 001	824284	SM5210B	BIOCHEMICAL OXYGEN DEMAND	10/09/2025 16:53	R		970.600	646.600	8.83		
		SM5210B	BIOCHEMICAL OXYGEN DEMAND	10/09/2025 16:53	MB		0.000				
		SM5210B	BIOCHEMICAL OXYGEN DEMAND	10/09/2025 16:53	STD	198.00	201.650				101.8

QC FLAGS: MB or BLK = METHOD BLANK LR = LAB REPLICATE MSD = MATRIX SPIKE DUPLICATE STD or LCS = STANDARD SPK or MS = MATRIX SPIKE

SUBMISSION SAMPLE NUMBER NUMBER	SAMPLE	METHOD	ANALYTE	ANALYSIS DATE/TIME	ÖΞ	QC QC FLAG VAL	QC SAI VALUE RE	SAMPLE LR RESULT RES	SULT	LR %RSD	SPK RESULT	STD-SPK %REC
25100510 - 001	824382	SYSTEA EASY	SYSTEA EASY NITRATE+NITRITE AS N	10/13/2025 13	13.03 LR		0.310		0.296	3.31		
		SYSTEA EASY	SYSTEA EASY NITRATE+NITRITE AS N	10/13/2025 13	13:00 MB		0.000	00				
25100510 - 001	824382	SYSTEA EASY	SYSTEA EASY NITRATE+NITRITE AS N	10/13/2025 13	13:03 SPK	'K 0.20	0.099	6			0.310	105.0
		SYSTEA EASY	SYSTEA EASY NITRATE+NITRITE AS N	10/13/2025 13	13:01 STD	D 0.25	0.249	61				99.4

Comments:

DEP-SOP-001/01: Form FD 9000-8

Field Instrument Calibration Records

INSTRUMEN	T (MAKE	/MODE	L#) <u>YSI</u>	Pro Plus		INSTRUMENT #	#_5d	57
values, and the	date the s	tandards	(s) of stand were prep	lards used for calit ared or purchased	bration, i	the origin of the sta		
	A 4.0							
	B_7.0		-					
Standard	C							
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	(INIT, CONT)	SAMPLER INITIALS
10/8/25	854	a	4	3.99	0.3	yes	init	200
	856	В	7	7.07		igis	init	
	1127	a	4	4.64		ro	cont	
	1129	В	7	6.92	101	no	conf	4
⊠ <u>CONDUC</u>	TIVITY						1 1 1	-1dand
STANDARD	S: [Specify	the type	(s) of stand	lards used for calib	ration, t	he origin of the sta	ndards, the	stanaara
				ared or purchased				
				Im				
Standard	C	_	T.				TYPE	
DATE	TIME	STD (A,	STD	INSTRUMENT	%	CALIBRATED	(INIT,	SAMPLER INITIALS
(yy/mm/dd)	(hr:min)	B, C)	VALUE	RESPONSE	DEV	(YES, NO)	CONT)	T-138345
1018/25	850	a	1413	1415	001	yes	init	an
1	1131	a	1413	1502	6.3	no	long	2
	-							
4.7				P				
DO DO		30 4					114	standard
STANDARDS values, and the	S: [Specify e date the s	the type tandards	(s) of stand were prepare	lards used for calib ared or purchased]	ration, ti	he origin of the sta	ndards, the	stanaara
			hamber/100					
	C							
DATE	TIME	STD	STD	INSTRUMENT	No. 1	CALIBRATED	TYPE	SAMPLER
(yy/mm/dd)	(hr:min)	(A, B, C)	VALUE	RESPONSE	% DEV	(YES, NO)	(INIT, CONT)	INITIALS
10/8/25	848	a	100	95.2	4.6	ars	Triel	Jew
1	1125	a	100	103.3	3.3	na	cont	V
				The second secon				

DEP-SOP-001/01: Form FD 9000-8

NCTDUMEN	Tarre	a (ODEI	#\ IIb	21000 INST	DUME	NT: "		
X TURBIDIT		MODE	_#) <u>Hacn</u>	2100Q INST	KUME	NI#		
STANDARDS values, and the	: [Specify	andards	were prepa	ards used for calib ared or purchased	ration, i	the origin of the sto	andards, th	e standard
	3 100							
	80		170					_
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
10/8/25	850	a	20	19.5	2.5	ges	inet	ne
1	851	B	100	105	5	us	init	
	852	C	800	803	0.4	yes	inet	
	1122	a	20	22.2	11	he	rond	
	1123	3	100	104	4	no	cont	
$\sqrt{}$	1124	C	800	798	0.3	no	conf	4
ORP STANDARDS values, and the Standard	S: [Specify e date the s	the type tandards	(s) of stand were prepa		ration, ti	MENT #he origin of the stat		
Standard								
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS

DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
1.0				ia .				
-								
e (ille								

			S	TATION ID:	•	Lake 5	
			lι	OCATION:	1	Lake 5 OFF OF S	bank
			[ATE/TIME:	/	0/8/25	905
			A	LL TIMES A	RE:	circle	one)
WATERBO (Circle		Lake (>4 an	d <10HA) middle of oper		Large Lake ((collect sam	>10HA) ples at selected ic	ocation point)
	Small S (collect		representative		Large River (collect samp	les in representa	tive area)
Water Chara	ectoristics						
TOTAL WA	TER DEPTH:	3	(fee	1)	Sample [Depth:/ . 2	(feet)
STREAM F				within Banks	Flood	Conditions	
WATER LE	VEL: (Circle One) MPLE COLLECTION DEVIC (Circle One)	Low CE Var	Dom Direct	Grab with le Bottle	Dipper		
ield Measure	ments	Meter ID	# 525	<i>5</i> 4	Field Mea Read By:	surements (initials)	
ime (24 hr.)	Surface Depth Collected (feet)	pH* (SU)	D.O.(mg./L)		Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)
905	1.5	7.04	4.63	60.5	29.01	1250	4.53
îme (24 hr.)	Bottom Depth Collected (feet)	pH (SU)	D.O.(mg./L)	D.O. (%)	Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)
	preserved sample: number es immediately placed on ice		ulfuric acid add	led in field to	achieve pH	of less than 2:	Yes No
EATHER CO	NDITIONS: (circle) raining	, quear, p	artly cloudy, v	vindy		8 10	
ERSONNEL C	ON SITE: JOSSI 10	~ Wa	al 8m				
EMARKS:		,					

SURFACE WATER FIELD SHEET

Station Information

Traiso Bay

SURFACE WATER FIELD SHEET Station Information

STATION ID:

LOCATION:

DATE/TIME:

Lara 21 OFF OF weir 10/8/25 925

			A	ALL TIMES A	ARE:	(circle	one)
	e One) (cotter	Stream	d <10HA) middle of oper	water)	Large River	-10HA) les at selected lo es in represental	
Water Char	acteristics						
TOTAL WA	TER DEPTH: f 2 measurements) (Circle One if	4	(fee		Sample D		(feet)
STREAM F	LOW: applicable)	No		within Banks	Flood C	onditions	
WATER LE	EVEL: (Circle One) AMPLE COLLECTION DEVI (Circle One)	Low CE Van	Dom Direct	al High Grab with le Bottle	Dipper	Other	
eld Measure	ments	Meter ID	# 525	4	Field Meas Read By:	urements (initials)	w
ime (24 hr.)	Surface Depth Collected (feet)	pH* (SU)	D.O.(mg./L)	D.O. (%)	Temp (°C)	Conductivity (umhos/cm)	Turbidity (NTU)
925	L	2000			28.17		2.26
me (24 hr.)	Bottom Depth Collected (feet)	pH (SU)	D.O.(mg./L)	D.O. (%)	Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)
Sampl	preserved sample: number les immediately placed on ic NDITIONS: (circle) raining	e?	ulfuric acid add		achieve pH o	of less than 2:	(es No
RSONNEL (ON SITE:						
EMARKS:			1 53		528 A.M.		

SURFACE WATER FIELD SHEET Station Information

STATION ID:

LOCATION:

DATE/TIME:

ALL TIMES ARE:

Lake 12 OFF OF 17 bank 10/8/25 950

eTZ or (circle one)

WATERBO (Circle	DDY TYPE: e One)	Small Lake	>4 and < oles in mic	10HA) Idle of oper		Large Lake (>1 (collect sample	0HA) es at selected lo	cation point)
		Small Stream (collect samp		esentative		Large River (collect sample	s in representat	ive area)
Water Char	acteristics							
13.1	TER DEPTH:	3		(fee	t)	Sample De	pth:/ a 5	(feet)
STREAM F	(Circle	One if	No Flo	v Flow	within Banks	Flood Co	onditions	
WATER LE	VEL: (Circle MPLE COLLECT (Circle (ION DEVICE	Low Van Do		a High t Grab with le Bottle	Dipper	Other	
Field Measure		,	eter ID#	524		Field Measi Read By: (N
Firme (24 hr.) 950	Surface Depth ((feet)	Collected pH*	(SU) D.	O.(mg./L)	D.O. (%)	Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)
Time (24 hr.)	Bottom Depth C (feet)			O.(mg./L)		Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)
	preserved sample les immediately pl		os of sulfu	ric acid add	ded in field to	achieve pH o	f less than 2:	Yes No
VEATHER CO	NDITIONS: (circl	e) raining, (clea	partly	cloudy, v	vindy			
PERSONNEL C	ON SITE:	m						
REMARKS:								

SURFACE WATER FIELD SHEET Station Information

			s	TATION ID:	4	are 12	4
			L	OCATION:	01	O/8/25	N bank
				ATE/TIME:	<u>1</u>	0/8/25	1020
			A	LL TIMES A	RE:	ETZ or (circle o	CTZ one)
WATERBO (Circle		Lake (>4 and the state of the text) Lake (>4 and the text) Lake (>6	d <10HA) middle of oper		Large Lake (> (collect sampl	10HA) es at selected lo	cation point)
	Small (collec		representative		Large River (collect sample	es in representati	ve area)
Water Char	acteristics						
	TER DEPTH: f 2 measurements)	3	(fee	t)	Sample De	epth:/	feet)
STREAM F	(Circle One if LOW: applicable)	No	Flow Flow	within Banks	Flood C	onditions	
WATER LE	VEL: (Circle One)	Low	v Morm	al High			
WATER SA	MPLE COLLECTION DEVIC (Circle One)	CE Van		Grab with le Bottle	Dipper	Other	
ield Measure	ments	Meter ID	#5254		Field Meas Read By: (urements initials)	-
ime (24 hr.)	Surface Depth Collected (feet)	pH* (SU)	D.O.(mg./L)		Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)
1020	1.5	7.78	6.16	81.1	29.01	1043	6,00
ime (24 hr.)	Bottom Depth Collected (feet)	pH (SU)	D.O.(mg./L)	D.O. (%)	Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)
*pH of	preserved sample: number	of drops of s	ulfuric acid add	ded in field to	achieve pH o	of less than 2:	
Sampl	es immediately placed on ico	?					Yes No
EATHER CO	NDITIONS: (circle) raining	, clear, pa	artly cloudy, v	vindy			
ERSONNEL C	ON SITE:)		A Billion			
EMARKS:							

SURFACE WATER FIELD SHEET Station Information

STATION ID:

LOCATION:

DATE/TIME:

ALL TIMES ARE:

Lake 22 OFF OF S bank 10/8/25 1050

ETZ or (circle one)

CTZ

WATERBODY TYPE: (Circle One) Small Stream (collect samples in middle of open-water) Small Stream (collect samples in representative area) Water Characteristics TOTAL WATER DEPTH: (Average of 2 measurements) (Circle One if STREAM FLOW: applicable) WATER LEVEL: (Circle One) WATER SAMPLE COLLECTION DEVICE (Circle One) Water Characteristics Flood Conditions Flow within Banks Flood Conditions Flow Within Banks Flood Conditions WATER SAMPLE COLLECTION DEVICE (Circle One) WATER SAMPLE COLLECTION DEVICE (Circle One) Water ID# Sample Bottle Field Measurements Meter ID# Sample Bottle Field Measurements Meter ID# Sample Bottle Field Measurements Read By: (initials) Turbidity (mintos/cm) (NTU) A A A A A A A A A A A A A A A A A A A								
				representative		Large River collect sample	s in representat	ive area)
Water Char	acteristics							
TOTAL WA	ATER DEPTH:	ts)	2	(feet)	Sample De		(feet)
STREAM F			No	Flow Flow	vithin Banks	Flood Co	nditions	
	71 284					Dipper	Other	
WATER SA			L Val				(
ld Magguro	monte		Motor ID	# 525	4			
ne (24 hr.)	Surface Depth	Collected	pH* (SU)	D.O.(mg./L)	D.O. (%)	Temp (°C)	Conductivity (µmhos/cm)	(NTU)
	10 To	Collected	pH (SU)	D.O.(mg./L)	D.O. (%)	Temp (°C)		(NTU)
				ulfunc acid ad	ded in field to	o achieve pH o	f less than 2:	Yes No
ATHER CO	ONDITIONS: (cir	cle) raining	clear, p	artly cloudy, v	vindy			
RSONNEL	ON SITE:	Jw.						
MARKS:								

SURFACE WATER FIELD SHEET Station Information

			ST	ATION ID:	20	rke 3	2
STATION ID: $2ake 32$ LOCATION: $0FF \circ F ? 1 \circ b \omega r$ DATE/TIME: $10/8/25 \cdot 1/20$						2 bank	
			AL	L TIMES AF	RE:	ETZ or (circle o	CTZ ne)
WATERBODY TYPE: Small Lake (>4 and <10HA) Large Lake (>10HA) (Circle One) Collect samples in middle of open water) (collect samples at selected location point)							
Small Stream (collect samples in representative area) Large River (collect samples in representative area)							
Water Chara	acteristics						
TOTAL WATER DEPTH: (feet) Sample Depth: (feet)							
(Circle One if							
STREAM FLOW: applicable) No Flow Flow within Banks Flood Conditions							
WATER LEVEL: (Circle One) WATER SAMPLE COLLECTION DEVICE (Circle One) Van Dom Direct Grab with Sample Bottle Other							
Field Measurements Meter ID# 5252 Field Measurements Read By: (initials) Time (24 hr.) Surface Depth Collected pH* (SU) D.O.(mg./L) D.O.(%) Temp (°C) Conductivity Turbidity (NTI I) Conductivity Turbidity Conductivity Turbidity Conductivity Cond							
Time (24 hr.)	Surface Depth Collected (feet)	pH* (SU)	D.O.(mg./L)	D.O. (%)	Temp (°C)	Conductivity	Turbidity (NTU)
1120	1.5	7.38	5.88	7801	30.86	1044	3.74
Time (24 hr.)	Bottom Depth Collected (feet)	pH (SU)	D.O.(mg./L)		Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)
*pH of preserved sample: number of drops of sulfuric acid added in field to achieve pH of less than 2: Samples immediately placed on ice? Yes No							
WEATHER CO	NDITIONS: (circle) mining	, clear A	artly cloudy.	windy			
PERSONNEL ON SITE: Cartly cloudy, windy							
REMARKS:							

Benchmark EA, Inc. 1001 Corporate Avenue, Suite 102

(941) 723-6061-fax Sample Temperature checked upon receipt at (941) 723-9986 / (800) 736-9986 Palmetto, FL 34221 1711 12th St. East Sample Temperature checked upon receipt at

(941) 625-3137 / (800) 736-9986

North Port, FL 34289 (941) 423-7336 fax

Benchmark EA South

GHD Services, Inc. (HSA ENG) 2675 Winkler Ave. Suite 180 Client:

Erik Isem (239) 215-3914 Ft. Myers Fl 33901

Email EDD Reports to: Connor Haydon (Connor Haydon@Ehd com) Shannon Tucker 239-210-8653

Lessica o walsneggned, com

Laboratory Submission #: BEA with Temperature Gun ID #258 PC# 340-023264 Profile: 840, QC Report BEAS with Temperature Gun ID #7

Chain of Custody Form: Treviso Lakes WQM PO# 340-023264 Project Number: 11225022-09

Laboratory										
	Unique bottle ID ID	Chlorophyll a (445.0)	Plain	I x 500mL Opaque Plastic						
e ³ / Total # of Containers = 24	Unique bottle ID 1C	Ortho-Phos (Lab Filtered)	Plain	1 x 1/2 Pint Plastic						
Parameters Preservative Container Type / Total # of Containers = 24	Unique bottle ID 1B	BOD5 (SM5210B) TSS (SM2540D)	Plain	1 x 2 Quart Plastic	905	925	056	1020	1050	0211
Paramete	Unique bottle ID 1A	NO3-NO2 (5)3162 623) TKN (351.2) NH3 (350.1) TP (355.3) T-N (Calc.)	1.1mL 1:4 H ₂ SO ₄ pH<2 ^{Cl} Lot # 25-09	1 x 1/2 Pint Plastic	Date/Time: 10/8 /25	Date/Time:	Date/Time:	Date/Time:	. Date/Time:	Date/Time:
Common	Matrix ²				SW	SW	SW	SW	SW	SW
Commis	Type Matrix ²				Grab	Grab	Grab	Grab	Grab	Grab
Ctation	ID				Lake S	Lake 4	Lake 12	Lake 14	Jake 22	Lake 32

"Sample Hype" is used to indicate whether the sample was a grab (G) or whether if was a composite (C).
"Sample Mary" is used to indicate whether the sample was a grab (G) or whether if was a composite (C),
"Sample Mary" is used to indicate whether the sample was a grab (G) or whether it is a grap or the sample was a composite (C), gurface water (GW), gurface water (GW), facts nuffer water (GY), and the sample was a fact or the sample was a grap (G) or glass (G) or glas

Instructions:

Each bottle has a label identifying sample ID, premeasured preservative contained in the bottle, sample type, client ID, and parameters for analysis.

The following information should be added to each bottle label after collection with permanent black ink; date and time of collection, sampler's name or initials, and any field number or ID.

All bottles not containing preservative may be rinted with appropriate ample prior to collection.

The client is responsible for decumentation of the sampling event. Please one special ampling events on the sample custody form.

Sample kit has been created by BEA using new, certified bottles unless otherwise noted.

Laboratory Sample Acceptability: pH <2:0 BEA Temperature:

1 Collector & Alliation: Losule Wed 82.	Date: 10/8/25	Time: 1348	Received By & Affiliation: (Print & Sign) SIGLIPLY BALLELY GUM	Sydn Baller	Date: 10/8/95	Time:
2 Relinquished By & Affiliation: (Print & Sign) College, Affile,	Date:	Time:	Received By & Affiliation: (Print & Sign)	<u> </u>	Date:	Time:
3 Relinquished By & Affiliation: (Print & Sign)	Date:	Time:	Received By & Affiliation: (Print & Sign)		Date:	Time:
4 Relinquished By & Affiliation: (Print & Sign)	Date:	Time:	Received By & Affiliation: (Print & Sign)		Date:	Time:
S Relinquished By & Affiliation: (Print & Sign)	Date:	Time:	Received By & Affiliation: (Print & Sign)		Date:	Time:

Data Compliance Report

November 5, 2025

То	Mr. Richard Freeman Manager of Field Operations Calvin, Giordano & Associates, Inc. 1800 Eller Drive, Suite 600 Fort Lauderdale, FL 33316	Contact No.	954-644-9630				
Copy to	File	Email	Sheri.Finn@ghd.com				
From	Sheri Finn/cs/55 Project No. 11225022						
Project Name	Wentworth Estates (Treviso Bay) Surface Water Sampling						
Subject	Analytical Results Compliance Report Surface Water Quality Monitoring Wentworth Estates (Treviso Bay) Naples, Florida October 2025						

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

1. Compliance Review

Samples were collected in October 2025 in support of the Wentworth Estates (Treviso Bay) Surface Water Quality Monitoring sampling. The analytical results are summarized in Table 1. All samples were prepared and analyzed within the method required holding times. The method blank results were non-detect. All reported laboratory control sample (LCS) analyses demonstrated acceptable accuracy. Laboratory duplicate analyses were performed for some analytes. All results were acceptable, indicating good analytical precision. The matrix spike (MS) results were evaluated per the laboratory limits. The MS analyses performed were acceptable, demonstrating good analytical accuracy.

Based on this compliance review, the results in Table 1 are acceptable for use.

Regards,

Sheri Finn Analyst

Dhi L.L.