MIROMAR LAKES COMMUNITY DEVELOPMENT DISTRICT

FEBRUARY 8, 2024

PREPARED BY:

JPWARD & ASSOCIATES, LLC, 2301 NORTHEAST 37TH STREET, FORT LAUDERDALE, FL 33308 T: 954-658-4900 E: JimWard@JPWardAssociates.com

MIROMAR LAKES COMMUNITY DEVELOPMENT DISTRICT

February 1, 2024

Board of Supervisors

Miromar Lakes Community Development District

Dear Board Members:

The regular meeting of the Board of Supervisors of the Miromar Lakes Community Development District will be held on **Thursday, February 8, 2024**, at **2:00 P.M.** in the **Library at the Beach Clubhouse, 18061** Miromar Lakes Parkway, Miromar Lakes, Florida 33913.

The following WebEx link and telephone number are provided to join/watch the meeting remotely: <u>https://districts.webex.com/districts/j.php?MTID=m24512749241c97175e42024ca27f6d3e</u> Access Code: **2347 334 4337**, Event Password: **Jpward**

Or Phone: **408-418-9388** and enter the access code **2347 334 4337**, password: **Jpward** (**579274** from phones) to join the meeting.

Agenda

- 1. Call to Order & Roll Call.
- 2. Consideration of Minutes:
 - I. January 11, 2024 Regular Meeting.
 - II. January 22, 2024 Continued Meeting.
- 3. Staff Reports.
 - I. District Attorney.
 - II. District Engineer
 - III. District Asset Manager.
 - a) Operations Report February 1, 2024.
 - b) Water Quality Report January 30, 2024.
 - c) Waterway Inspection Report January 29, 2024.
 - IV. District Manager
 - a) Florida Law changes to Form 1 Filings.
 - b) Financial Statement for period ending January 31, 2024 (unaudited).
- 4. Supervisor's Requests and Audience Comments.

- I. Supervisor Mike Weber: Ravenna Water Management System turnover.
- 5. Announcement of Next Meeting March 14, 2024.
- 6. Adjournment.

The first order of business is the call to order & roll call.

The second order of business is the consideration of the Minutes from the Miromar Lakes Community Development District Board of Supervisors Regular Meeting held on January 11, 2024, and the Continued meeting held on January 22, 2024.

The third order of business is staff reports by the District Attorney, District Engineer, and District Asset Manager.

The balance of the agenda is standard in nature, and I look forward to seeing you at the meeting. If you have any questions and/or comments before the meeting, please do not hesitate to contact me directly by phoning (954) 658-4900.

Sincerely yours,

Miromar Lakes Community Development District

omes A Word

James P. Ward District Manager

The Fiscal Year 2024 meeting schedule is as follows:

February 8, 2024	March 14, 2024
April 11, 2024	May 9, 2024
June 13, 2024	July 11, 2024
August 8, 2024	September 12, 2024

1		MINUTES OF MEETING
2		MIROMAR LAKES
3	COMM	UNITY DEVELOPMENT DISTRICT
4		
5		upervisors of the Miromar Lakes Community Development District
6		024, at 2:00 P.M. in the Library at the Beach Clubhouse, 18061
7	Miromar Lakes Parkway, Miromar Lak	es, Florida 33913.
8		
9		
10	Present and constituting a qu	
11	Alan Refkin	Chair
12	Michael Weber	Vice Chair
13	Patrick Reidy	Assistant Secretary
14	Mary LeFevre	Assistant Secretary
15	Doug Ballinger	Assistant Secretary
16		
17	Also present were:	
18	James P. Ward	District Manager
19	Greg Urbancic	District Attorney
20	Charlie Krebs	District Engineer
21	Richard Freeman	Asset Manager
22	Ben Steets	Grau and Associates
23		
24	Audience:	
25		
26		not included with the minutes. If a resident did not identify
27	themselves or the audio file	did not pick up the name, the name was not recorded in these
28	minutes.	
29		
30		
31	FIRST ORDER OF BUSINESS	Call to Order/Roll Call
32		
33		d the meeting to order at approximately 2:00 p.m. He conducted
34	roll call; all Members of the Board wer	e present, constituting a quorum.
35		
36		
37	SECOND ORDER OF BUSINESS	Consideration of Minutes
38		
39	November 28, 2023 – Regular Meetin	g Minutes
40		
41	Mr. Ward asked if there were any add	itions, deletions, or corrections for the Minutes; there were none.
42		
43		y Mike Weber, seconded by Mary LeFevre, and
44		November 28, 2023, Regular Meeting Minutes
45	were approved as am	ended.
46		
47		

48 THIRD ORDER OF BUSINESS

Consideration of Audited Financial Statements

49

50 Consideration of the Acceptance of the Audited Financial Statements for the Fiscal Year ended 51 September 30, 2023

52

54

53 Mr. Ward introduced Mr. Ben Steets from Grau and Associates.

55 Mr. Ben Steets from Grau and Associates thanked the Board for choosing Grau and Associates. He 56 thanked Jim Ward and staff for their assistance in performing a smooth audit. He indicated the audit 57 was required by the State of Florida and bond indentures. He reviewed the Audited Financial 58 Statements indicating the first two pages declared the auditor's opinion which was unmodified which 59 meant Grau and Associates believed the financial statements were fairly presented. He indicated it was 60 a clean opinion which was the best opinion Grau could give. He stated next was the Management's 61 Discussion and Analysis which was a recap of the financial activity for the year comparing the current 62 figures to the prior year. He indicated starting on page 7 were the Financial Statements including the statement of net position; statement of activities; balance sheet; and statement of revenues, 63 64 expenditures, and changes in fund balance. He noted the figures were consistent with previous years, 65 nothing was unusual or unexpected. He reported on page 13 began the notes to the financial statements. He indicated on Page 19, note 5 and note 6 showed the total bonds outstanding which 66 67 were \$14,480,000 dollars; the District made its scheduled debt service payments, and everything was 68 going according to routine. He indicated page 22 showed the Budget to Actuals. He discussed the 69 remainder of the Audited Financial Statements which included various reports required by the Florida 70 Auditor General. He indicated the District was in compliance, and there were no findings.

- 72 Mr. Weber asked if there were any audit adjustments on the year end financials.
- 74 Mr. Steets responded in the negative, there were no proposed adjusted journal entries.
- 75 76

77

78

79

71

73

On MOTION made by Alan Refkin, seconded by Mary LeFevre, and with all in favor, the Audited Financial Statements for Fiscal Year ended September 30, 2023, were accepted.

ended September 30, 2023, were accepted.

Mr. Reidy indicated page 22 showed the cash balances, and at the end of the Fiscal Year the District had
 \$950,000 dollars which left \$600,000 or \$700,000 dollars for reserves which was a much better place
 than the District was in previously.

83 84

86

85 FOURTH ORDER OF BUSINESS

Consideration of Resolution 2024-1

87 Consideration of Resolution 2024-1, a Resolution of the Board of Supervisors of the Miromar Lakes 88 Community Development District Reaffirming, Restating and Re-Establishing The District's adoption of 89 an Electronic Records Policy and a Policy on the use of Electronic Signatures; addressing severability, 90 conflicts and an effective date

91

92 Mr. Ward indicated under the law, a particular policy needed to be followed for keeping the electronic 93 records of the District. He stated the original Resolution was adopted in 2018 and there had been a few changes to the Statute since then. He explained this Resolution brought the policy up to date and incompliance with current State Statute.

96 97 On MOTION made by Mary LeFevre, seconded by Mike Weber, and with all in favor, Resolution 2024-1 was adopted, and the Chair was 98 99 authorized to sign. 100 101 102 103 FIFTH ORDER OF BUSINESS **Staff Reports** 104 105 I. District Attorney 106 107 Mr. Greg Urbancic indicated he was still preparing the easement form for Ravenna. He stated he 108 should have it done early/mid next week. He reported the Legislative Session started January 9, 109 2024 and he would update the Board in this regard in the coming months. He discussed potential legislative changes. He reported Ethics Training now needed to be completed: one hour of Public 110 111 Records, one hour Sunshine, two hours of Ethics. He noted there were several ways to complete 112 this training and when the Board Members filed Form 1, each would be required to check the Ethics Training check box. He stated Form 6 was a result of a law change on January 1, 2024 which 113 114 required city council members and mayors of municipalities to file a Form 6 which was much more intrusive than Form 1 and required a statement of net worth. He stated the Board Members did not 115 need to file a Form 6 under current law; only the Form 1 was required. He indicated this was an 116 117 election year, and there would be a qualifying period this year. He said Mr. Ward would provide 118 additional information about the election and which seats were up for election. 119 120 Mr. Refkin asked for Mr. Urbancic to provide the websites at which the Board could complete the Ethics Training. 121 122 123 Mr. Urbancic responded he would do so. 124 Mr. Ward stated he had a memo prepared for the February meeting with this information. He 125

125 Mr. Ward stated he had a memo prepared for the February meeting with this information. He 126 stated he would send this information out to the Board Members shortly. He stated Mary LeFevre 127 and Pat Reidy were up for election this year. He stated the qualifying packages would be provided 128 in April or May with all the necessary information. He noted Ms. LeFevre and Mr. Reidy would end 129 up filing the Form 1 twice this year as a result, once in June and once during the qualifying period.

- 131 Mr. Weber noted once Mr. Urbancic was done with the Ravenna easement document, the Board 132 would want to review the document and sign off on the document before it was handed to 133 Ravenna. He noted Ravenna hoped to have the document before its Board Meeting at the end of 134 January. He asked how the Board would be able to review the document before the end of the 135 month without another Board Meeting.
- 137 Mr. Ward stated either today's meeting could be continued, or another meeting could be scheduled138 prior to the end of the month.
- 139

136

130

- Mr. Weber indicated he would reach out to the Ravenna HOA President and see whether he was stillexpecting this document before the end of the month.
- 143 Mr. Ward stated to schedule a new meeting, 10 days of advertising were required, and he would 144 need to know soon to get it scheduled; or this meeting could be continued until January 25, and this 145 relinquished the need for advertising.
- Discussion ensued regarding continuing the meeting or holding off until the next meeting to reviewthe document.
- 150 Ms. LeFevre asked about the property tied to the Ravenna permit.
- 152 Mr. Ward explained the developer bought a piece of land right next to Ravenna which came out of 153 foreclosure and was now developing it. He stated he did not know the name assigned to the 154 development. He indicated the property was located right next to Ravenna.
- 156 Mr. Weber noted Ravenna had water on either side of the property.
- 158 Mr. Charlie Krebs stated a portion of Miromar Lakes Parkway drained into the lake inside Ravenna, 159 so from the bridge down to almost the intersection, going into the peninsula, to the west, all 160 drained down toward the lake and used this lake for its water quality. He said it tied back into the 161 lakes to the east, but it was all connected in its own shared drainage basin.
- 163 Mr. Ward stated he thought there was a developable piece of property which was tied to the 164 Ravenna permit.
- 166 Mr. Krebs stated he believed the property Mr. Ward was referencing was Sardinia, which was on the 167 other side of the bridge, and Sardinia was separated from Ravenna by the bridge.
- 169 Ms. LeFevre asked if Sardinia was on the same permit as Ravenna.
- 171 Mr. Krebs stated it was the same overall permit for Miromar Lakes, but when Ravenna was being 172 developed, so was Miromar Lakes Parkway, so the drainage basins were connected.
- 174 Ms. LeFevre stated then the Ravenna permit did not include Sardinia or any other community.
- Mr. Krebs agreed. He said everything in the peninsula, east of the bridge, was a different drainagebasin.
- Ms. LeFevre asked if the transfer of the permit to the CDD was automatic. She asked if the CDD hadthe option to refuse the permit.
- 182 Mr. Ward explained the permit was tied to the acceptance of the water management system, so 183 when the CDD accepted the system, the permit had to be transferred.
- 185 Ms. LeFevre asked if for some reason Ravenna was not transferred to the CDD, would the permit 186 remain in Ravenna's name.
- 187

142

146

149

151

155

157

162

165

168

170

173

175

178

181

184

188 Mr. Ward responded in the affirmative. 189 190 Ms. LeFevre asked if the permit remained in Ravenna's name, could the CDD be required to do any 191 repairs on Ravenna's water management system. 192 193 Mr. Ward stated the overall water management system was in the CDD's name, so the CDD was tied 194 to the whole water management system, so he did not know what the regulatory agency would 195 require if there were a problem in Ravenna. He stated the regulatory agency could go after 196 Ravenna, or both Ravenna and the CDD. 197 198 Mr. Krebs agreed; the application was still in Ravenna's name, so if the Board chose to transfer the 199 Ravenna water management system to the CDD, the application would transfer to the CDD. He 200 noted the permit had the same permit number as all of Miromar Lakes, it was just a separate 201 application for Ravenna. 202 203 Discussion ensued regarding the inability to know whether the CDD would be held responsible for 204 Ravenna's water management system problems; the importance of taking over Ravenna's water 205 management system; and the recent improvements to Ravenna's water management system. 206 207 II. District Engineer 208 209 No report. 210 211 III. Asset Manager 212 213 a) Operations Report - December 1, 2023 b) Operations Report – January 1, 2024 214 215 216 Mr. Richard Freeman indicated (indecipherable). He stated it would be a series of 6 treatments 217 over the next six months. He stated lake bank restoration was scheduled to start the 22nd or the 29th of January and would begin in Porto Romano. 218 219 220 Ms. LeFevre asked about the 35 additional boxes being installed for cane toad removal. She noted 221 she thought Miromar was focusing on the boxes, while the CDD was focusing on tadpole removal. 222 223 Mr. Freeman indicated the 35 boxes were being installed by the CDD in addition to the boxes 224 Miromar installed. He stated the cane toad vendor suggested placing the boxes to help keep the 225 tadpoles from reoccurring. 226 227 Ms. LeFevre asked why Miromar was not paying for the boxes. 228 229 Mr. Freeman explained it was the CDD's vendor who suggested the extra boxes. He explained the 230 boxes would reduce the CDD's vendor's time spent collecting tadpoles as the boxes would reduce the number of eggs being laid. 231 232 233 Ms. LeFevre noted he felt Miromar should be paying for the boxes not the CDD, especially if it cost 234 \$160 per box. 235

236 237 238		Ms. LeFevre agreed; she felt Miromar should pay for the boxes as this was how it seemed to be split.
239 239 240		Mr. Freeman noted it was \$160 dollars a month to rent all 35 boxes in total, not \$160 per box.
241 242		Mr. Reidy asked about the fishery.
243 244 245 246		Mr. Freeman responded Mr. Bernard met with the aquatic vendor to discuss the next steps and the vendor was going to do some electrofishing to see what species were in the lake and to determine what the next steps should be. He noted this would be included in the next month's report.
247 248		Ms. LeFevre asked about electrofishing.
249		
250 251 252		Mr. Freeman explained electrofishing was shocking the water to bring the fish up to the surface to see what species were in the lake.
252 253 254		Ms. LeFevre asked if this killed the fish.
255 256		Mr. Freeman responded in the affirmative.
	IV. D	District Manager
258		
259 260	a) b)	Financial Statement for period ending November 30, 2023 (unaudited) Financial Statement for period ending December 31, 2023 (unaudited)
261	5)	Thiancial Statement for period ending becember 51, 2025 (diladdited)
262		No report.
263		
264		
265 266	SIXTH	H ORDER OF BUSINESS Supervisor's Requests and Audience Comments
267 268	Mr. V	Vard asked if there were any Supervisor's requests.
269 270	Mr. B	Ballinger asked about the Bellavista turnover.
271	Mr. R	Refkin stated he went to the Bellavista Board Meeting in December and spoke to the Board, which
272		as been doing for two years. He stated he gave the Bellavista Board a letter outlining exactly what it
273		d cost for Charlie Krebs to do the necessary work and told the Bellavista Board it could use Mr.
274		s' firm to do the work or find another firm. He stated he explained to Bellavista the CDD simply
275		ed to be certain the water management system was problem free before it was turned over to the for maintenance. He stated the Board indicated it wished to use Mr. Krebs' firm and was going to
276 277		e forward with the process.
278	move	e forward with the process.
279 280	Mr. R	Reidy asked if the cost was the problem. He asked how much it would cost.
281	Mr. R	Refkin responded he did not remember what the cost was, but the cost was not what had delayed
282 283	the p	rocess. He indicated the Board had no issue with the cost. He stated the delay was simply because vista did not prioritize the transfer.

284	
285	Mr. Ward noted there were no audience members present. He asked what the Board wished to do
286	about the meeting.
287	
288	Mr. Weber attempted to reach the Ravenna HOA Board President.
289	
290	The Board decided to continue today's meeting until Monday, January 22, 2024, at 9:30 a.m. unless the
291	meeting was rendered unnecessary and was canceled.
292	
293	
294	SEVENTH ORDER OF BUSINESS Announcement of Next Meeting
295	Announcement of Next Masting Colony 9, 2024
296 297	Announcement of Next Meeting – February 8, 2024
297	
298	EIGHTH ORDER OF BUSINESS Adjournment
300	The meeting was continued until Monday, January 22, 2024, at 9:30 a.m.
301	The meeting was continued until wonday, January 22, 2024, at 5.50 a.m.
302	On MOTION made by Doug Ballinger, seconded by Mary LeFevre, and
303	with all in favor, the meeting was continued until Monday, January 22,
304	2024 at 9:30 a.m. at the Beach Clubhouse.
305	
305	
307	Miromar Lakes Community Development District
308	Wiromar Lakes Community Development District
309	
310	
311	
312	James P. Ward, Secretary Alan Refkin, Chairman

1 2		MINUTES OF MEETING MIROMAR LAKES
3	COMM	UNITY DEVELOPMENT DISTRICT
4 5 6 7 8	_	of Supervisors of the Miromar Lakes Community Development uary 22, 2024, at 9:30 a.m. in the Library at the Beach way, Miromar Lakes, Florida 33913.
9 10	Present and constituting a quo	nrum.
11	Alan Refkin	Chair
12	Michael Weber	Vice Chair
13	Patrick Reidy	Assistant Secretary
14	Mary LeFevre	Assistant Secretary
15	Doug Ballinger	Assistant Secretary
16		
17	Also present were:	
18	James P. Ward	District Manager
19 20	Greg Urbancic	District Attorney
20 21	Erin Dougherty	General Manager Miromar Lakes Clubhouse
21 22 23	Audience:	
24 25 26 27		ot included with the minutes. If a resident did not identify did not pick up the name, the name was not recorded in these
28 29 30	FIRST ORDER OF BUSINESS	Call to Order/Roll Call
31 32 33 34	District Manager James P. Ward called roll call; all Members of the Board were	I the meeting to order at approximately 9:30 a.m. He conducted e present, constituting a quorum.
35 36	SECOND ORDER OF BUSINESS	Continuation of Meeting
37 38 39 40		oday's continued meeting was to discuss an item on last week's ge utility and lake maintenance easement agreement with the
41 42 43 44 45	access drainage and utility easement of some ancillary items. He stated in se utility easement and it referenced thr and the small interior lake. He expla	roposed Easement Agreement, and it was broken down into the component, and the lake maintenance easement component with ection 2 of the agreement was the primary access drainage and ree exhibits which included the internal roadway, the main lake, ined why the CDD needed access to these areas. He noted the
46 47	-	ance needs and requirements; however, the Ravenna HOA would interior lake's lake banks. He noted in subsection D, the District

- recognized the Condo Association had docks in the main lake and to the extent that these docks were tobe modified, it would need to be cleared with the CDD.
- 50

53

51 Mr. Mike Weber asked if everyone in Miromar Lakes had the same maintenance restrictions on the 52 docks which were implied by the Agreement.

54 Mr. Urbancic responded in the negative. He explained the docks in Miromar Lakes preexisted and the 55 CDD did not enter into any easement agreement with the rest of Miromar Lakes. He explained the 56 circumstances of the CDD accepting the facilities not by deed created a different situation.

57

59

58 Mr. Weber stated from a consistency standpoint, this might be overly restrictive.

60 Mr. Ward stated the issue was not the maintenance of the docks, it was dredging the lake and 61 expanding existing docks; this would need District approval.

62

63 Mr. Weber stated he understood dock expansion needing District approval, but not maintenance.

64

65 Mr. Urbancic indicated he could take out the general maintenance reference and only require 66 modification approval.

67

69

68 Mr. Pat Reidy agreed it was too restrictive as it was.

Mr. Weber noted the more restrictive the agreement was, the less the Ravenna HOA would like theagreement.

72

Discussion ensued regarding making sure the agreement was fair and consistent; not wanting the
 District to be responsible for dock maintenance; and possibly not requiring approval for dock
 maintenance or modification.

76

Mr. Ward explained the District owned the underlying fee title to the existing water management system; theoretically, the existing docks in Miromar Lakes could not be expanded in any way without District approval. He stated he felt the sentence should read, "The Association shall not undertake any dredging of the main lake, shall not be permitted to make a modification to the docks, or to increase the number of docks without written approval of the District." He said this way, the Association could do whatever it pleased other than increase the size of the docks or move the docks.

83

84 Mr. Urbancic agreed to make these changes.

85

Ms. Mary LeFevre asked if any resident in Miromar Lakes could buy a Ravenna dock or were the docksstrictly for Ravenna residents.

88

Discussion ensued regarding Bellini renting docks; Bellamare allowing residents to purchase docks; the
 Ravenna Condo Association owning the Ravenna docks; all neighborhood HOAs owning the docks but

allowing residents to use the docks or enabling residents to secure exclusive access to certain docks;
 nonresidents never being able to secure ownership to any dock in Miromar Lakes.

93

94 Mr. Reidy asked if a resident owned one of the docks in Ravenna, would the resident be required to sign

- this agreement. He stated he guessed Ravenna owned the docks and were leasing, renting, or allowing
 homeowners to use the docks. He stated Bellini leased its docks to Bellini residents only.
- 97

Discussion continued regarding how the individual neighborhoods managed their docks; and the legalimplications of a Ravenna resident owning a dock.

100

101 Mr. Urbancic stated in the Ravenna Declaration of Condominium, the docks were referenced to be 102 limited common elements. He explained this meant the docks were associated with various units, but 103 he was unsure exactly how the docks were allocated. He stated the condominium association did not 104 necessarily own any property, the condominium association administered the condominium on behalf 105 of the unit owners who each owned an undivided interest in the common elements or had the right to 106 use the limited common elements. He stated the association was able to grant certain easements over 107 common elements of the condominium. He noted this was an unusual situation, but basically the 108 condominium association would be agreeing to an easement and restrictions in a sense over the 109 common elements.

- 110
- 111 Mr. Weber asked Mr. Erin Dougherty to join the meeting.
- 112

Ms. LeFevre asked if any of the Ravenna docks were owned by a resident within Miromar, but outside ofRavenna.

115

Mr. Dougherty stated he did not know of anyone who had purchased a dock in Ravenna, but he couldreach out to Ravenna and confirm this information.

118

119 Mr. Urbancic stated he would make the revisions and capture the Board's intent in subsection D. He 120 continued to review the Agreement. He stated in subsection F, under permits, the District was 121 obligating the Association to transfer whatever permits necessary to operate the water management 122 system in the area. He stated section 3, the areas around the lakes, included typical lake maintenance 123 easements and carved out the rights for the District to access the facilities for drainage purposes. He 124 stated the obligation in subsection B was on the Ravenna Association to maintain these areas and not 125 install any landscaping which might interfere with the District's ability to access the facilities. He 126 indicated subsection 4 gave the Association authorization to install a fountain in the interior lake as long 127 as it did not interfere with the operation of the stormwater system. He noted the Association would be 128 responsible for the fountain similar to some of the other fountains where the District granted a license 129 agreement for associations to install fountains in lakes owned by the District. He stated subsection 5 130 indicated the Ravenna Association would not attempt to levy assessments on the District for the 131 easements. He stated subsection 6 was an indemnity provision to make sure that the District was not 132 responsible for what happened in the lake area, for actions not caused by the District. He noted the rest 133 of the Agreement was standard provisions.

134

136

138

135 Mr. Weber asked if "interior lake" was the legal description of the detention pond.

- 137 Mr. Urbancic responded he was referring to the detention pond when he referred to the "interior lake."
- 139 Mr. Weber noted if this was the legal term then he had no arguments, but it was not actually a lake.
- 140

141 Mr. Urbancic noted if Mr. Weber would rather, he could call the interior lake a pond.

142 143 Mr. Weber stated he would prefer it be referred to as a detention pond. 144 145 Mr. Urbancic indicated he would change the Agreement to say interior detention pond. 146 147 Discussion ensued regarding the channel which ran from the main lake; the channel originally being 148 intended to become a marina; the problems encountered when developing the "marina" which 149 prevented it from being completed; where the Ravenna detention pond was located; where the 150 waterway was located; where the rip rap was located; where the docks were located; where the road 151 was located; where the pool was located; and where the easements were located. 152 153 Mr. Ward indicated he would have Charlie Krebs prepare a simple color graphic of Ravenna so the Board 154 would be able to locate the different water management system elements. 155 156 Mr. Urbancic noted Mr. Krebs might be able to create a master exhibit which could be incorporated into 157 the Agreement which showed where the easement locations were overlaid. 158 159 Mr. Ward stated this was an excellent idea as the attachments were difficult to read. 160 Mr. Urbancic noted he would ask Mr. Krebs and he would incorporate the master exhibit as the first 161 162 exhibit in the Agreement. 163 164 Mr. Ward stated this was an excellent idea as well. 165 Mr. Weber stated Ravenna would be responsible for maintaining the fountain in the detention pond, 166 167 and the land around the detention pond; however, the District would be responsible for the water in the lake and the weeds, etc. He noted the District would not be responsible for the shoreline as there was 168 169 no rip rap in this area. 170 171 Mr. Ward stated in general the District had a rule in place for all of Miromar; the District owned the 172 lakes (in normal circumstances) up to the control line, and then had an easement above the control line 173 to the top of the bank. He stated the District's rule said the District would maintain to the top of the 174 bank for purposes of lake bank restoration, but if an adjoining owner landscaped this area the owner 175 maintained the vertical improvements, and this was consistent throughout Miromar Lakes. He stated 176 the rule was, the District would maintain the lake bank to the extent if there was a washout, or if there 177 were rip rap, but if there were landscaping, irrigation, etc., then Ravenna would maintain the 178 landscaping and irrigation. 179 180 Mr. Weber stated in that case, the District would not be doing the lawn maintenance, etc. 181 182 Mr. Ward agreed. 183 184 Mr. Alan Refkin noted something similar was done in the peninsula where someone needed to 185 landscape in the easement, and the District agreed with the caveat that if the District needed access, it 186 was the homeowner's responsibility to remove and replace any landscaping which prohibited District 187 access. 188

189 Ms. LeFevre stated there was a document online which also laid out the rules and responsibilities of the 190 Associations versus the District. 191 192 Mr. Ward agreed. He noted the Agreement was to be viewed in addition to the online document 193 outlining the rules and responsibilities of the Associations and the District. 194 195 Mr. Weber asked if the online document should be referenced in the Agreement. 196 197 Mr. Ward responded it should not be referenced in the Agreement as the District periodically changed 198 its rules. 199 200 Ms. LeFevre noted the District might want to at least mention the online document to Ravenna. 201 Mr. Weber noted in 2E, 5th line down, there was a scrivener's error. 202 203 204 Mr. Urbancic thanked Mr. Weber. 205 206 Ms. LeFevre asked if anything was omitted as this was an easement as opposed to ownership. 207 208 Mr. Urbancic responded it was different in the sense that the District did not have fee simple rights, but 209 he was careful, with Mr. Ward's help, to cover any contingencies which might arise, so he could not 210 think of anything else which needed to be included. 211 212 Mr. Ward stated the biggest thing, which Ravenna lost, was Ravenna was not transferring liability. He 213 stated he felt this was the biggest loss for an owner doing an easement as opposed to a deed. 214 215 Mr. Weber asked Mr. Urbancic to make the necessary modifications and send the document back out to 216 the Board. 217 218 Mr. Urbancic stated this would be done. 219 220 Mr. Ward noted the revised version would be sent to the Board without Mr. Kreb's map initially. 221 222 Discussion ensued regarding exactly what would be changed in the Agreement including section 2D, 223 interior lake changed to detention pond, the scrivener's error, the addition of the master exhibit, and 224 the addition of making the agreement effective upon the permit transfer. 225 Mr. Weber noted he did not see anything in the Agreement which would prevent Ravenna from wishing 226 227 to sign the Agreement. 228 229 Mr. Ward thanked Mr. Weber for his efforts in regard to this Agreement with Ravenna. 230 231 Discussion ensued regarding the remaining neighborhoods which needed to be transferred to the CDD. 232 233 The Board thanked Mike Weber. 234 235 236 THIRD ORDER OF BUSINESS Adjournment

237		
238	The meeting was adjourned at ap	proximately 10:15 a.m.
239		
240	On MOTION ma	de by Mary LeFevre, seconded by Doug Ballinger, and
241	with all in favor,	the meeting was adjourned.
242		
243		
244		Miromar Lakes Community Development District
245		
246		
247		
248		
249		
250	James P. Ward, Secretary	Alan Refkin, Chairman

MIROMAR LAKES COMMUNITY DEVELOPMENT DISTRICT

Monthly Asset Manager's Report January 2023

Prepared For: James Ward District Manager

Prepared By:

Calvin, Giordano & Associates, Inc.

A SAFEbuilt[®] COMPANY

CGA Project No. 13-5692 February 1, 2024

MIROMAR LAKES COMMUNITY DEVELOPMENT DISTRICT

TABLE OF CONTENTS

I.	PURPOSE	3
II.	CURRENT ASSET UPDATES	.3
III.	LOCATION MAP	.7

MIROMAR LAKES COMMUNITY DEVELOPMENT DISTRICT

I. PURPOSE

The purpose of this report is to provide the District Manager with an update on recent inspectionrelated activities. We will continue to provide updated monthly inspection reports on the status of ongoing field activities.

II. CURRENT ASSET UPDATES

- 1. Lake Maintenance
- 2. Fishery
- 3. Corrective Actions

1. Lake Maintenance

- Grasses, brushes, and invasive weeds such as alligator weed, cattails, torpedo grass, and vines were treated in lakes 1B, 1C, 1A, 2A, 3D, 3E, 6H, 6I, 60, 6P, and 6. Weeds found within the littorals were selectively treated to prevent damage to the beneficials.
- Lake 6R was treated for surface filamentous algae. Will follow up with vendor during next month's visit to determine effectiveness of the treatment.
- Lake 3D spike rush is being sprayed back every two weeks until control is gained. Previous treatment has shown to be effective, and growth is beginning to dye off. Additional treatment is still needed. The goal is to reduce the amount of growth and improve the overall aesthetics of the lake.
- Debris and vegetation floating along the peninsula marina will continue to be physically removed.
- Dissolved oxygen profiles were taken around the Bellini and Ana Capri cove as well as the waterfront within the midge fly treatment areas. Results will help us confirm if these areas are viable for the addition of native fish that target midge fly populations. The sampling data was sent out on 1/24, results should be received within a week's time.
- Midge fly treatment began along the Bellini, Anna Capri, and Castelli shoreline this month as well.
- Water levels are higher than usual this time of year due to frequent rains.

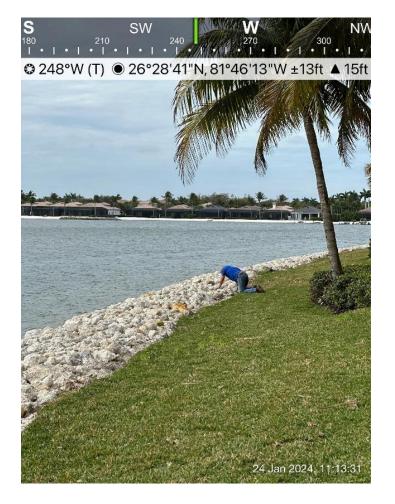
Wetland conditions in the Isebella.

Wetland conditions in the Isebella.

2. <u>Fishery</u>

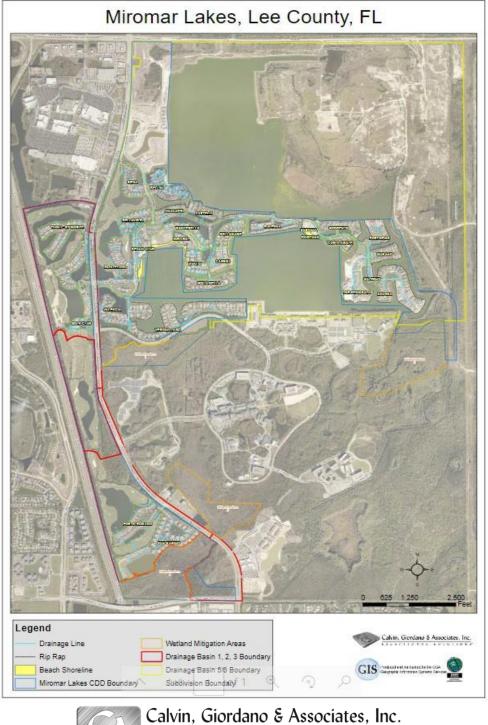

• The annual electrofishing program was completed this month. A formal report of the findings from this study and recommendations will be sent out by either David Beasley or Alex Johnson. This report will help us identify the type of species and fish that are currently in the lakes and give us a program to move forward.

3. Corrective Actions


- The riprap vendor has completed the installation in Ravenna and is currently working on bank sod restoration and they are working on minor details before completion. The CDD inspected on a weekly basis during the installation of this project.
- The aquatic vendor needs to stay on top of floating weeds and vegetation.

Rip Rap restoration in Ravenna.

Rip Rap restoration in Ravenna.



Rip Rap restoration in Ravenna.

Rip Rap restoration in Ravenna.

III. LOCATION MAP

E X C E P T I O N A L S O L U T I O N S[™] 1800 Eller Drive, Suite 600 · Fort Lauderdale, FL 33316 (phone) 954.921.7781 · (fax) 954.266.6487 Certificate of Authorization #514 2675 Winkler Ave, STE 180 Fort Myers, Florida 33901 USA www.ghd.com

Our ref: 11225022-14

January 30, 2024

Mr. Richard Freeman Calvin, Giordano & Associates, Inc. 1800 Eller Drive, Suite 600 Fort Lauderdale, FL, 33316

Miromar Lakes Water Quality Sampling Report – November 2023

Dear Mr. Freeman,

GHD Services Inc. (GHD) is pleased to present the results of our water quality sampling services for Lakes 3 and 6 – Miromar Lakes.

1. Water Quality Sampling – November 2023

The November 2023 sampling event consisted of the collection of surface water samples from a total of six (6) test locations (WQL #1 through #4 and #6) from Lake 6 and one (1) surface water sample taken near the weir outfall located in Lake 3 within the Miromar Lakes Golf Club (WQL #5). The sampling locations are depicted on **Figure 1**.

The sampling plan includes sample collection at the following locations and depths:

Sample Identification	Sampling Location	Sample Depth
WQ Location #1	Rip Rap in front of the Miromar Lakes Pkwy Bridge	18 inches
WQ Location #2	Mouth of Canal (west of Via Portofino Way)	18 inches
WQ Location #3A	Back of Weir (southeast of Via Navona Way)	18 inches
WQ Location #4	Beachfront (east of the Miromar Lakes Pkwy & Montlelago Ct.)	18 inches
WQ Location #5	Lake 3 Outfall within the Miromar Lakes Golf Club	18 inches
WQ Location #6	Front of Weir (southeast of Via Navona Way)	36 inches

Conductivity, dissolved oxygen, pH, and temperature were measured in the field with a calibrated YSI Model 556 multi-parameter water quality meter. Turbidity and total water depth were measured at the time of sample collection. Surface Water Field Sheets are attached. Field data is summarized in **Table 1**.

Samples from WQL #1 through #4 and #6 are collected using direct grab sampling methods. The sample from WQL #5 is collected using the direct-dip sampling method with an extendable dipper. The samples are capped, labeled, packed on ice, and transported to Benchmark EnviroAnalytical, Inc., in North Port, Florida. Benchmark EnviroAnalytical, Inc. is certified by the State of Florida and NELAP (National Environmental Laboratory Accreditation Conference). Laboratory analyses are conducted for 5-day biochemical oxygen demand (BOD5), total suspended solids (TSS), total nitrogen, nitrogen speciation (ammonia, total Kjeldahl nitrogen [TKN], and nitrate + nitrite), total phosphorus, ortho phosphorus (lab filtered), and chlorophyll-*a*.

→ The Power of Commitment

All samples collected during the November 2023 sampling event were prepared and analyzed within the method-required holding times. The laboratory data have been reviewed with respect to authenticity, precision, limits of detection, and accuracy of the data. The laboratory analytical results are summarized in the attached **Laboratory Analytical Reports.**

Trend graphs have been prepared for each monitor location for laboratory analytical results and select field measurements. The trend graphs include water quality action levels for select parameters as developed and presented in the Lake Management Plan for Miromar Lakes. GHD recommends that if a single measurement exceeds an action level that the District notify their lake maintenance contractor to inspect the lake(s) for evidence of potential algal blooms and treat as needed. If a subsequent measurement exceeds an action level, it is recommended that the District investigates potential reasons behind the change and takes appropriate action(s) as applicable based on the findings.

2. Analytical Summary

It appears that between the prior sampling event in August 2023 and the recent sampling event conducted on November 21, 2023:

- BOD5 levels remained consistent and low. The BOD5 concentration at all sampling locations was below the method detection limit ([MDL], noted by a "U" following the result).
- The average chlorophyll-a concentration slightly increased from 7.29 mg/m³ in August 2023 to 8.50 mg/m³ in November 2023. No location revealed chlorophyll-*a* results in exceedance of the action limit, defined as 20 mg/m³.
- Dissolved oxygen trends have historically varied. The average dissolved oxygen (%) content decreased by 8.1% between the August and November 2023 sampling events (from 93.7% in August to 85.6% in November). All sampling locations remain significantly above the action limit, defined as 38%.
- The average concentration of total nitrogen remained relatively consistent across all sample locations (from 0.662 mg/L in August to 0.734 mg/L in November).
- The average concentration of total phosphorus remained consistent across all sample locations (from 0.029 mg/L in August to 0.023 mg/L in November).
- The concentration of ortho phosphorus remained relatively consistent across all sampling locations.
- The turbidity decreased at all locations (from an average of 9.68 NTU in August to 2.54 NTU in November).
- The average concentration of total suspended solids slightly increased (from 2.84 mg/L in August to 3.37 mg/L in November).
- The average conductivity remained consistent at all locations (from 319.8 umhos/cm in August to 320.1 umhos/cm in November).
- The average pH slightly decreased (from 8.40 SU in August to 8.26 SU in November).
- The average temperature decreased by about 8.19°C (from 32.52°C in August to 24.33°C in November).

Based on historical data, it appears the concentration of BOD tends to be elevated during April/May, especially at WQL #5. While the BOD has historically fluctuated, including detections above the action level (2 mg/L), the BOD generally does not remain above its action level for more than one monitoring event. The last action level exceedance for BOD was observed in May 2020 at WQL #5. This month, the concentration of BOD at all sample locations was undetected and far below the action level. During April/May, the lake maintenance contractor may need to inspect the lakes, and specifically WQL #5, more frequently for evidence of potential algal blooms and treat them as needed.

The chlorophyll-*a* concentrations were below the action level of 20 milligrams per meter cubed (mg/m³) at all sampling locations. Historically, elevated concentrations of chlorophyll-*a* have been observed at WQL #5. The chlorophyll-*a* concentration at this sampling location has decreased since the last sampling event (from 19.5 mg/m³ in March 2023 to 14.8 mg/m³ in November 2023) but remains elevated when compared to the remaining sampling locations. Chlorophyll-*a* concentrations appear to be low and stable at all other locations. A cyclic trend for chlorophyll-*a* concentration can be observed at WQL #5. Generally, it appears that there are relatively high chlorophyll-*a* concentrations within WQL #5 during the warmer months (March through August) and low concentrations in the cooler months (September through February). Chlorophyll-*a* concentrations at WQL #5 will continue to be closely monitored to delineate and confirm this trend.

The dissolved oxygen at all sampling locations remains significantly above the defined action level (a minimum of 38%). The DO concentration at all sampling locations decreased since the previous sampling event (except for at WQL #4 and #5, where it remained consistent). Due to historical fluctuations, the dissolved oxygen content in WQL #3 was closely monitored during the current sampling event. This is most likely due to the physical location of the water quality sample, as it is taken directly behind a weir and in a location that contains moderate vegetation growth. Since the historic low noted in March 2023, the dissolved oxygen content at WQL #3 has increased and is consistent with the other sampling locations.

The dissolved oxygen readings at the monitoring locations fluctuate throughout the year as anticipated given the temperature of the water and biological activity. The dissolved oxygen concentration typically fluctuates throughout the year with apparent lows during the latter part of the year (September through December). Based on historical trends, GHD recommends the District notify their lake maintenance contractor to continue to watch for evidence of algal blooms from September to December.

For the November 2023 sampling event, overall, total nitrogen remained relatively consistent when compared to the previous sampling event, remaining relatively consistent at WQL #2, #3, #4, and #5, and slightly increasing at WQL #1 and #6. All locations remain well below the action level defined for total nitrogen (1.25 mg/L) and are consistent with historical results.

During the November 2023 monitoring event, the concentrations of total phosphorus slightly decreased at WQL #1, #2, and #3 and remained relatively consistent at WQL #4, \$5, and #6. The total phosphorus concentration was detected between the MDL and the practical quantitation limit ([PQL], noted by an "I" following the result) at all sampling locations. Results for total phosphorus are consistent with historical levels and are below the action limits, defined as 0.05 mg/L.

The turbidity observed across all sampling locations during the November sampling has decreased since the previous sampling event (from an average of 9.68 NTU in August to 2.54 NTU in November) and remains well under the action level, defined as 32 NTU for the parameter.

While the concentration of total suspended solids (TSS) has fluctuated, it generally remains below the action level of 8 mg/L. The results from the November 2023 sampling event revealed that the TSS concentration has decreased at WQL #4, remained consistent at WQL #1, #2, and #3, and increased at WQL #5 and #6. All locations remain below the action level.

The conductivity at all monitoring locations during the November 2023 sampling event has decreased when compared to the previous sampling event, except at WQL #2 where it has remained consistent. In general, conductivity levels between sampling locations remain consistent with one another. Historically, WQL #5 has a higher level of conductivity, due to its proximity to the golf course, whereas the other sampling locations are from Lake 6 in the residential development area. Therefore, the variation from WQL #5 to the other locations is expected.

The average pH across all water quality locations was calculated to be 8.26 SU, slightly lower than the previous sampling event (8.40 SU), ranging between 8.10 SU at WQL #3 to 8.42 SU at WQL #5. All sampling locations displayed a decreasing trend in pH when compared to the previous sampling event except WQL #3, which remained consistent. The pH at sampling locations WQL #4 and #6 no longer exceed the upper action limit, defined as 8.5 SU. The pH across all locations has historically fluctuated and is dependent on many factors, including biological activity and water temperature. A cyclic increasing and decreasing trend in pH has been observed since the beginning of sampling records in April 2016. The lowest pHs across all locations appear to occur towards the end of the year (October to December), whereas the highest appear to occur between April and June.

A Trophic State Index calculation (defined by FAC 62-303.200 and the Water Quality Assessment for the State of Florida 305(b) Report) was used to help classify the quality of water based on each water body's chlorophyll*a*, total phosphorous, and total nitrogen concentration. A ratio of total nitrogen to total phosphorus was calculated for each water body to determine general conditions. For this sample event, the breakdown of the sample locations is below:

- Nutrient Balanced (10<TN/TP<30) WQL #2, #4, and #6
- Phosphorus Limited (TN/TP<10) None
- Nitrogen Limited (TN/TP>30) WQL #1, #3, and #5

As can be seen above, half of the sampling locations were found to be nutrient-balanced, and the other half were found to be nitrogen-limited during the November 2023 sampling event.

A TSI value was calculated based on the TN/TP ratio for each location. A TSI of 0-59 is "good", a value of 60-69 is "fair", and a value of 70+ is "poor". Based on the results of this sampling event, each sampling location's calculated TSI value is:

WQL #1	WQL #2	WQL #3	WQL #4	WQL #5	WQL #6
29.24	44.87	39.45	43.55	46.94	44.03

3. Conclusions and Recommendations

Water quality conditions from November 2023 appear to remain relatively consistent since the previous August 2023 sampling event. Overall, decreasing trends were observed in dissolved oxygen and pH, consistent trends were observed in BOD5, total nitrogen, and total phosphorus, and a slightly increasing trend was observed in chlorophyll-*a*.

The pH levels at all sampling locations decreased. The pH at WQL #4 and #6 no longer exceeds the defined upper action limit of 8.5 SU. Due to the cyclic trend defined for the parameter, GHD expects the pH to remain consistent or slightly increase before the next sampling event. Continued close monitoring of the pH at all sampling locations is recommended since pH is a vital parameter for algal growth within freshwater bodies. Cyanobacteria (blue-green algae) prefer basic water (between a pH of 7.5 and 10 SU).

The chlorophyll-*a* concentration displayed slightly increasing trends across all sampling locations, however, all locations sampled display concentrations under the defined action level. GHD will continue to monitor the sampling locations closely to ensure levels remain under the action level and to define and confirm the cyclic pattern observed.

Based on these conclusions, GHD recommends continued water quality monitoring at this time. The next triannual sampling event is planned for the end of March 2024.

Please call if you have questions or need additional information. Regards,

Madison Muller

Madison Mullen Environmental Scientist

Madison.Mullen@ghd.com

Jessica Walm

Jessica Walsh Environmental Engineer

239-944-0709 Jessica.Walsh@ghd.com

Lori Coolidge Senior Geologist

813-476-9940 Lori.Coolidge@ghd.com

Encl: Attachments: Laboratory Data Compliance Memo Table Figure Trend Graphs Laboratory Analytical Reports Surface Water Field Sheets

Tri-Annual Water Quality Sampling Report Lakes 3 and 6 - Miromar Lakes Fort Myers, Lee County, Florida

Sampling Location Map

11225022-08

March 2023

Figure 1

Table 1

Analytical Results Summary Surface Water Quality Monitoring Miromar Lakes, Fort Myers, Florida November 2023

Sample Leastion/Sample ID:											mber 2023	14	/Q Locatio		4										
Sample Location/Sample ID: Sample Date:		04/27/16	00/02/46	10/31/16	01/31/17	05/04/17	08/02/17	12/06/17	04/26/18	08/22/18	12/11/18		10/24/19		06/03/20	10/21/20	03/03/21	08/05/21	10/26/21	02/17/22	08/22/22	11/28/22	03/27/23	08/07/23	11/21/23
Field Parameters	Units	04/2//16	08/03/16	10/31/16	01/31/17	05/04/17	08/02/17	12/06/17	04/26/18	08/22/18	12/11/18	04/16/19	10/24/19	02/17/20	06/03/20	10/21/20	03/03/21	08/05/21	10/26/21	02/17/22	08/22/22	11/28/22	03/27/23	08/07/23	11/21/23
Total Water Depth	Feet	7.66	NS	6.1	5.83	3.5	6.2	4.89	2.9	5.7	4.95	6.83	7.2	4.2	3.9	6.5	5.4	6	6	6	5	8	8	NM	10
· - ···· · · ····· = - F ···	Feet	1.5		1.5	1.5	1.5	1.5	4.69	2.9	1.5	4.95	1.5	1.5	4.2	1.5	1.5	1.5	1.5	-	1.5	1.5	-	1.5	1.5	10
Sample Depth		408	1.5 353	387	369.3	405	413.1	348.2	407.3	354.6	312.7	387.3	348.4	369	689	300	292	358	1.5 304	304	295	1.5 337	356.9	322.3	312
Conductivity, field	umhos/cm								6.89		8.54							330					7.7		6.82
Dissolved oxygen (DO), field	mg/L	8.03	5.91	7.53	8.13	7.95	5.91	6.95		7.39		6.49	6.1	8.02	6.05	7.07	7.51		5.74	5.74	6.12	7.43		6.25	
Dissolved oxygen (DO), field	%	100.9*	79.3	89.4	88.5	101.6	79.6	83	87.6	98.9	96	80.9	78.1	94.5	77	87.1	90.6	93.1	72.3	72.3	83.1	90.1	93.4	87.4	82
pH, field	s.u.	8.44	8.19	7.92	8.13	7.97	8.23	8.08	8.37	8.24	8.31	8.13	8.36	8.26	8.29	8.57	8.82	8.1	8.32	8.5	8.64	7.77	7.95	8.36	8.21
Temperature, field	Deg C	27.08	30.8	24	19.5	28	31	24.3	27.7	30.6	21.1	26.6	28.1	23.44	29.1	26.6	25	29.91	27.4	27.4	31.5	25.3	25.2	32.6	23.9
Turbidity, field	NTU	2.41	3.44	3.55	4.64	8.16	5.05	3.02	2.9	5.53	4.39	3.32	3.71	1.66	3.63	2.42	1.58	1.87	1.82	1.82	2.93	1.48	2.94	8.4	1.91
Secchi Disk	Depth	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	4.8	4.2	3.9	6	5.4	6	NS	5	NS	NS	NS	NS	2
Wet Parameters	Units																								
Ammonia-N	mg/L	U	0.026 I	U	0.035	0.008 U	0.008 U	0.026 I	0.008 U	0.022 I	0.008 U	0.008 U	0.017 I	0.008 U	0.008 U	0.008 U	0.008 U	0.008 I	0.008 U	0.008 U	0.008 I	0.008 U	0.008 U	0.008 U	0.008 U
TAN criteria calculation	mg/L	0.24	0.29	0.67	0.66	0.48	0.27	0.52	0.26	0.27	0.45	0.42	0.26	0.42	0.28	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Total kjeldahl nitrogen (TKN)	mg/L	0.626	0.878	0.911	0.968	0.611	0.58	0.629	0.551	0.565	0.632	0.619	0.588	0.632	0.591	0.05 U	0.48	0.474	0.531	0.43	0.63	0.689	0.712	0.6	0.656
Total nitrogen	mg/L	0.626	0.878	0.911	0.974	0.616	0.592	0.629	0.565	0.574	0.639	0.619	0.588	0.639	0.591	0.05 U	0.48	0.474	0.531	0.43	0.818	0.876	0.736	0.613	0.675
Nitrite/Nitrate	mg/L	U	U	U	0.006 I	0.005 I	0.012 I	0.004 U	0.014 I	0.009 I	0.007 I	0.006 U	0.006 U	0.007 I	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.188	0.187	0.024	0.013 I	0.0191
Ortho phosphorus (Field Filtered)	mg/L	0.074	0.071	0.03	0.012	0.027	0.038	0.026	0.014	0.017	0.014	0.024	0.026	0.028	0.051	0.0126	0.024	0.011	0.014	0.003 I	0.018	0.007 I	0.023	0.012	0.004 I
Total phosphorus	mg/L	0.087	0.091	0.068	0.038	0.027 I	0.041	0.121	0.017 I	0.018 I	0.026 I	0.034	0.063	0.035	0.053	0.011 I	0.059	0.022 I	0.030 I	0.017 I	0.017 I	0.018 I	0.031 I	0.024 I	0.010 I
Chlorophyll	mg/m3	5.91	7.32	7.86	11.1	8.42	9.27	5.25	10.1	10.1	6.92	3.72	7.81	3.71	3.96	5.76	3.55	7.44	7.06	3.36	8.28	17.3	4.68	6.4	10.7
Total suspended solids (TSS)	mg/L	2.35	3.49	4.8	7	7.8	6.15	3.67	3.67	4	4.2	1.20 I	2.20 I	3.5	3.2	2.4	2.00 I	2.8	0.667 I	2.5	2.20 I	3.9	2.35	3.44	3.4
Biochemical oxygen demand (total BOD5)	mg/L	0.706 I	1 U	1 U	1.06 I	1.40 I	1.05 I	1 U	1.16 I	2.721	1.85 I	1.24	1.03	10	10	1 U	1 U	1 U	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
														-											-
Sample Location/Sample ID:	•					•							/Q Locatio	n #2 / WQI	_2	•	•						•		
Sample Location/Sample ID: Sample Date:		04/27/16	08/03/16	10/31/16	01/31/17	05/04/17	08/02/17	12/06/17	04/26/18	08/22/18	12/11/18	V		n #2 / WQI 02/17/20	_2 06/03/20	10/21/20	03/03/21	08/05/21	10/26/21	02/17/22	08/22/22	11/28/22	03/27/23	08/07/23	11/21/23
	Units	04/27/16	08/03/16	10/31/16	01/31/17	05/04/17	08/02/17	12/06/17	04/26/18	08/22/18	12/11/18	V	/Q Locatio			10/21/20	03/03/21	08/05/21	10/26/21	02/17/22	08/22/22	11/28/22	03/27/23	08/07/23	11/21/23
Sample Date:	Units Feet	04/27/16 7.43	08/03/16 NS	10/31/16 9.2	01/31/17 8.56	05/04/17 6	08/02/17 6.2	12/06/17 8.01	04/26/18	08/22/18	12/11/18 8.65	V	/Q Locatio			10/21/20 9	03/03/21 8.8	08/05/21 10.25	10/26/21 7.5	02/17/22 8.5	08/22/22 6	11/28/22 15	03/27/23	08/07/23	11/21/23 NM
Sample Date: Field Parameters		•										V 04/16/19	/Q Locatio 10/24/19	02/17/20	06/03/20										
Sample Date: Field Parameters Total Water Depth	Feet	7.43	NS	9.2	8.56	6	6.2	8.01	6	10.2	8.65	V 04/16/19 8.31	/Q Locatio 10/24/19 10.4	02/17/20 7.8	06/03/20 6.35	9	8.8	10.25	7.5	8.5	6	15	11	NM	
Sample Date: Field Parameters Total Water Depth Sample Depth	Feet Feet	7.43 1.5	NS 1.5	9.2 1.5	8.56 1.5	6 1.5	6.2 1.5	8.01 1.5	6 1.5	10.2 1.5	8.65 1.5	V 04/16/19 8.31 1.5	/Q Locatio 10/24/19 10.4 1.5	02/17/20 7.8 1.5	06/03/20 6.35 1.5	9 1.5	8.8 1.5	10.25 1.5	7.5 1.5	8.5 1.5	6 1.5	15 1.5	11 1.5	NM 1.5	NM 1
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field	Feet Feet umhos/cm	7.43 1.5 422	NS 1.5 359	9.2 1.5 384	8.56 1.5 385.7	6 1.5 414	6.2 1.5 435	8.01 1.5 638.9	6 1.5 417	10.2 1.5 363.7	8.65 1.5 321.2	04/16/19 8.31 1.5 411.8	/Q Locatio 10/24/19 10.4 1.5 346.4	02/17/20 7.8 1.5 373	06/03/20 6.35 1.5 701	9 1.5 300	8.8 1.5 303	10.25 1.5 346	7.5 1.5 305	8.5 1.5 322	6 1.5 293	15 1.5 339	11 1.5 359.5	NM 1.5 314.8	NM 1 314
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field	Feet Feet umhos/cm mg/L	7.43 1.5 422 7.67	NS 1.5 359 5.55	9.2 1.5 384 7.12	8.56 1.5 385.7 8.05	6 1.5 414 7.87	6.2 1.5 435 6.21	8.01 1.5 638.9 6.58	6 1.5 417 6.95	10.2 1.5 363.7 7.52	8.65 1.5 321.2 9.9	04/16/19 8.31 1.5 411.8 6.88	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27	02/17/20 7.8 1.5 373 8.12	06/03/20 6.35 1.5 701 5.86	9 1.5 300 4.64	8.8 1.5 303 7.04	10.25 1.5 346 7.09	7.5 1.5 305 8.64	8.5 1.5 322 8.18	6 1.5 293 7.63	15 1.5 339 7.36	11 1.5 359.5 6.88	NM 1.5 314.8 7	NM 1 314 7.04
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field	Feet Feet umhos/cm mg/L %	7.43 1.5 422 7.67 97.4	NS 1.5 359 5.55 74	9.2 1.5 384 7.12 84.7	8.56 1.5 385.7 8.05 87.6	6 1.5 414 7.87 101.8	6.2 1.5 435 6.21 82.9	8.01 1.5 638.9 6.58 77.7	6 1.5 417 6.95 88	10.2 1.5 363.7 7.52 100.2	8.65 1.5 321.2 9.9 110	V 04/16/19 8.31 1.5 411.8 6.88 85.9	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81	02/17/20 7.8 1.5 373 8.12 96.2	06/03/20 6.35 1.5 701 5.86 77.2	9 1.5 300 4.64 51.1	8.8 1.5 303 7.04 86.9	10.25 1.5 346 7.09 93.7	7.5 1.5 305 8.64 99.9	8.5 1.5 322 8.18 90.4	6 1.5 293 7.63 99.2	15 1.5 339 7.36 89.6	11 1.5 359.5 6.88 89.4	NM 1.5 314.8 7 100	NM 1 314 7.04 83.9
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field	Feet Feet umhos/cm mg/L % s.u.	7.43 1.5 422 7.67 97.4 8.37	NS 1.5 359 5.55 74 8.07	9.2 1.5 384 7.12 84.7 7.68	8.56 1.5 385.7 8.05 87.6 7.97	6 1.5 414 7.87 101.8 8.21	6.2 1.5 435 6.21 82.9 8.11	8.01 1.5 638.9 6.58 77.7 7.89	6 1.5 417 6.95 88 8.31	10.2 1.5 363.7 7.52 100.2 8.03	8.65 1.5 321.2 9.9 110 8.06	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27	02/17/20 7.8 1.5 373 8.12 96.2 8.49	06/03/20 6.35 1.5 701 5.86 77.2 8.31	9 1.5 300 4.64 51.1 8.26	8.8 1.5 303 7.04 86.9 8.72	10.25 1.5 346 7.09 93.7 8	7.5 1.5 305 8.64 99.9 8.22	8.5 1.5 322 8.18 90.4 8.44	6 1.5 293 7.63 99.2 8.56	15 1.5 339 7.36 89.6 7.97	11 1.5 359.5 6.88 89.4 8.26	NM 1.5 314.8 7 100 8.41	NM 1 314 7.04 83.9 8.13
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field	Feet Feet umhos/cm mg/L % s.u. Deg C	7.43 1.5 422 7.67 97.4 8.37 27.62	NS 1.5 359 5.55 74 8.07 30.4	9.2 1.5 384 7.12 84.7 7.68 24.1	8.56 1.5 385.7 8.05 87.6 7.97 19.5	6 1.5 414 7.87 101.8 8.21 28.7	6.2 1.5 435 6.21 82.9 8.11 30.5	8.01 1.5 638.9 6.58 77.7 7.89 23.7	6 1.5 417 6.95 88 8.31 27.5	10.2 1.5 363.7 7.52 100.2 8.03 30.4	8.65 1.5 321.2 9.9 110 8.06 20.5	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5	02/17/20 7.8 1.5 373 8.12 96.2 8.49 23.9	06/03/20 6.35 1.5 701 5.86 77.2 8.31 30.1	9 1.5 300 4.64 51.1 8.26 27.1	8.8 1.5 303 7.04 86.9 8.72 25.5	10.25 1.5 346 7.09 93.7 8 29.87	7.5 1.5 305 8.64 99.9 8.22 27.4	8.5 1.5 322 8.18 90.4 8.44 20.2	6 1.5 293 7.63 99.2 8.56 31.6	15 1.5 339 7.36 89.6 7.97 25.6	11 1.5 359.5 6.88 89.4 8.26 25.3	NM 1.5 314.8 7 100 8.41 32.7	NM 1 314 7.04 83.9 8.13 24.1
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field	Feet Feet umhos/cm mg/L % s.u. Deg C NTU	7.43 1.5 422 7.67 97.4 8.37 27.62 3.97	NS 1.5 359 5.55 74 8.07 30.4 31.71	9.2 1.5 384 7.12 84.7 7.68 24.1 4.38	8.56 1.5 385.7 8.05 87.6 7.97 19.5 4.66	6 1.5 414 7.87 101.8 8.21 28.7 7.15	6.2 1.5 435 6.21 82.9 8.11 30.5 3.12	8.01 1.5 638.9 6.58 77.7 7.89 23.7 3.2	6 1.5 417 6.95 88 8.31 27.5 8.22	10.2 1.5 363.7 7.52 100.2 8.03 30.4 3.75	8.65 1.5 321.2 9.9 110 8.06 20.5 5.76	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7 3.37	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5 3.55	02/17/20 7.8 1.5 373 8.12 96.2 8.49 23.9 2.18	06/03/20 6.35 1.5 701 5.86 77.2 8.31 30.1 3.49	9 1.5 300 4.64 51.1 8.26 27.1 2.4	8.8 1.5 303 7.04 86.9 8.72 25.5 3.41	10.25 1.5 346 7.09 93.7 8 29.87	7.5 1.5 305 8.64 99.9 8.22 27.4 2.13	8.5 1.5 322 8.18 90.4 8.44 20.2	6 1.5 293 7.63 99.2 8.56 31.6 2.9	15 1.5 339 7.36 89.6 7.97 25.6 1.13	11 1.5 359.5 6.88 89.4 8.26 25.3 3.14	NM 1.5 314.8 7 100 8.41 32.7 8.2	NM 1 314 7.04 83.9 8.13 24.1 1.4
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth	7.43 1.5 422 7.67 97.4 8.37 27.62 3.97	NS 1.5 359 5.55 74 8.07 30.4 31.71	9.2 1.5 384 7.12 84.7 7.68 24.1 4.38	8.56 1.5 385.7 8.05 87.6 7.97 19.5 4.66	6 1.5 414 7.87 101.8 8.21 28.7 7.15	6.2 1.5 435 6.21 82.9 8.11 30.5 3.12	8.01 1.5 638.9 6.58 77.7 7.89 23.7 3.2	6 1.5 417 6.95 88 8.31 27.5 8.22	10.2 1.5 363.7 7.52 100.2 8.03 30.4 3.75	8.65 1.5 321.2 9.9 110 8.06 20.5 5.76	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7 3.37	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5 3.55	02/17/20 7.8 1.5 373 8.12 96.2 8.49 23.9 2.18	06/03/20 6.35 1.5 701 5.86 77.2 8.31 30.1 3.49	9 1.5 300 4.64 51.1 8.26 27.1 2.4	8.8 1.5 303 7.04 86.9 8.72 25.5 3.41	10.25 1.5 346 7.09 93.7 8 29.87	7.5 1.5 305 8.64 99.9 8.22 27.4 2.13	8.5 1.5 322 8.18 90.4 8.44 20.2	6 1.5 293 7.63 99.2 8.56 31.6 2.9	15 1.5 339 7.36 89.6 7.97 25.6 1.13	11 1.5 359.5 6.88 89.4 8.26 25.3 3.14	NM 1.5 314.8 7 100 8.41 32.7 8.2	NM 1 314 7.04 83.9 8.13 24.1 1.4
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field DH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units	7.43 1.5 422 7.67 97.4 8.37 27.62 3.97 NS	NS 1.5 359 5.55 74 8.07 30.4 31.71 NS	9.2 1.5 384 7.12 84.7 7.68 24.1 4.38 NS	8.56 1.5 385.7 8.05 87.6 7.97 19.5 4.66 NS	6 1.5 414 7.87 101.8 8.21 28.7 7.15 NS	6.2 1.5 435 6.21 82.9 8.11 30.5 3.12 NS	8.01 1.5 638.9 6.58 77.7 7.89 23.7 3.2 NS	6 1.5 417 6.95 88 8.31 27.5 8.22 NS	10.2 1.5 363.7 7.52 100.2 8.03 30.4 3.75 NS	8.65 1.5 321.2 9.9 110 8.06 20.5 5.76 NS	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7 3.37 NS	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5 3.55 5.3	02/17/20 7.8 1.5 373 8.12 96.2 8.49 2.39 2.18 NS	06/03/20 6.35 1.5 701 5.86 77.2 8.31 3.0.1 3.49 5.5	9 1.5 300 4.64 51.1 8.26 27.1 2.4 6.5	8.8 1.5 303 7.04 86.9 8.72 25.5 3.41 7	10.25 1.5 346 7.09 93.7 8 29.87 2.44 7	7.5 1.5 305 8.64 99.9 8.22 27.4 2.13 NS	8.5 1.5 322 8.18 90.4 8.44 20.2 2.07 7	6 1.5 293 7.63 99.2 8.56 31.6 2.9 NS	15 1.5 339 7.36 89.6 7.97 25.6 1.13 NS	11 1.5 359.5 6.88 89.4 8.26 25.3 3.14 NS	NM 1.5 314.8 7 100 8.41 32.7 8.2 NS	NM 1 314 7.04 83.9 8.13 24.1 1.4 4
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L	7.43 1.5 422 7.67 97.4 8.37 27.62 3.97 NS U	NS 1.5 359 5.55 74 8.07 30.4 31.71 NS 0.019 I	9.2 1.5 384 7.12 84.7 7.68 24.1 4.38 NS U	8.56 1.5 385.7 8.05 87.6 7.97 19.5 4.66 NS 0.071	6 1.5 414 7.87 101.8 8.21 28.7 7.15 NS 0.008 U	6.2 1.5 435 6.21 82.9 8.11 30.5 3.12 NS 0.008 U	8.01 1.5 638.9 6.58 77.7 7.89 23.7 3.2 NS 0.036	6 1.5 417 6.95 88 8.31 27.5 8.22 NS 0.008 U	10.2 1.5 363.7 7.52 100.2 8.03 30.4 3.75 NS 0.008 U	8.65 1.5 321.2 9.9 110 8.06 20.5 5.76 NS 0.008 U	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7 3.37 NS 0.027	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5 3.55 5.3 0.008 U	02/17/20 7.8 1.5 373 8.12 96.2 8.49 23.9 2.18 NS 0.008 U	06/03/20 6.35 1.5 701 5.86 77.2 8.31 30.1 3.49 5.5 0.008 U	9 1.5 300 4.64 51.1 8.26 27.1 2.4 6.5 0.009 I	8.8 1.5 303 7.04 86.9 8.72 25.5 3.41 7 0.008 U	10.25 1.5 346 7.09 93.7 8 29.87 2.44 7 0.017 I	7.5 1.5 305 8.64 99.9 8.22 27.4 2.13 NS 0.008 U	8.5 1.5 322 8.18 90.4 8.44 20.2 2.07 7 7	6 1.5 293 7.63 99.2 8.56 31.6 2.9 NS 0.008 U	15 1.5 339 7.36 89.6 7.97 25.6 1.13 NS 0.008 U	11 1.5 359.5 6.88 89.4 8.26 25.3 25.3 25.3 .14 NS 0.008 U	NM 1.5 314.8 7 100 8.41 32.7 8.2 NS 0.008 U	NM 1 314 7.04 83.9 8.13 24.1 1.4 4 0.008 I
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L	7.43 1.5 422 7.67 97.4 8.37 27.62 3.97 NS U 0.26	NS 1.5 359 5.55 74 8.07 30.4 31.71 NS 0.019 I 0.36	9.2 1.5 384 7.12 84.7 7.68 24.1 4.38 NS U 0.90	8.56 1.5 385.7 8.05 87.6 7.97 19.5 4.66 NS 0.071 0.84	6 1.5 414 7.87 101.8 8.21 28.7 7.15 NS 0.008 U 0.32	6.2 1.5 435 6.21 82.9 8.11 30.5 3.12 NS 0.008 U 0.34	8.01 1.5 638.9 6.58 77.7 7.89 23.7 3.2 NS 0.036 0.71	6 1.5 417 6.95 88 8.31 27.5 8.22 NS 0.008 U 0.30	10.2 1.5 363.7 7.52 100.2 8.03 30.4 3.75 NS 0.008 U 0.38	8.65 1.5 321.2 9.9 110 8.06 20.5 5.76 NS 0.008 U 0.69	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7 3.37 NS 0.027 0.34	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5 3.55 5.3 5.3 0.008 U 0.30	02/17/20 7.8 1.5 373 8.12 96.2 8.49 23.9 2.18 NS 0.008 U 0.28	06/03/20 6.35 1.5 701 5.86 77.2 8.31 30.1 3.49 5.5 0.008 U 0.25	9 1.5 300 4.64 51.1 8.26 27.1 2.4 6.5 0.009 I NS	8.8 1.5 303 7.04 86.9 8.72 25.5 3.41 7 0.008 U NS	10.25 1.5 346 7.09 93.7 8 29.87 2.44 7 0.017 I NS	7.5 1.5 305 8.64 99.9 8.22 27.4 2.13 NS 0.008 U NS	8.5 1.5 322 8.18 90.4 8.44 20.2 2.07 7 7 0.008 U NS	6 1.5 293 7.63 99.2 8.56 31.6 2.9 NS 0.008 U NS	15 1.5 339 7.36 89.6 7.97 25.6 1.13 NS 0.008 U NA	11 1.5 359.5 6.88 89.4 8.26 25.3 3.14 NS 0.008 U NS	NM 1.5 314.8 7 100 8.41 32.7 8.2 NS 0.008 U NS	NM 1 314 7.04 83.9 8.13 24.1 1.4 4 0.008 I NS
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN)	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L	7.43 1.5 422 7.67 97.4 8.37 27.62 3.97 NS U 0.26 0.745	NS 1.5 359 5.55 74 8.07 30.4 31.71 NS 0.019 I 0.36 1.15	9.2 1.5 384 7.12 84.7 7.68 24.1 4.38 NS U 0.90 0.888	8.56 1.5 385.7 8.05 87.6 7.97 19.5 4.66 NS 0.071 0.84 1.04	6 1.5 414 7.87 101.8 8.21 28.7 7.15 NS 0.008 U 0.32 0.507	6.2 1.5 435 6.21 82.9 8.11 30.5 3.12 NS 0.008 U 0.34 0.641	8.01 1.5 638.9 6.58 77.7 7.89 23.7 3.2 NS 0.036 0.71 0.71	6 1.5 417 6.95 88 8.31 27.5 8.22 NS 0.008 U 0.30 0.675	10.2 1.5 363.7 7.52 100.2 8.03 30.4 3.75 NS 0.008 U 0.38 0.613	8.65 1.5 321.2 9.9 110 8.06 20.5 5.76 NS 0.008 U 0.69 0.693	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7 3.37 NS 0.027 0.34 0.606	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5 3.55 5.3 0.008 U 0.30 0.605	02/17/20 7.8 1.5 373 8.12 96.2 8.49 23.9 2.18 NS 0.008 U 0.28 0.403	06/03/20 6.35 1.5 701 5.86 77.2 8.31 30.1 3.49 5.5 0.008 U 0.25 0.556	9 1.5 300 4.64 51.1 8.26 27.1 2.4 6.5 0.009 I NS 0.5	8.8 1.5 303 7.04 86.9 8.72 25.5 3.41 7 0.008 U NS 0.45	10.25 1.5 346 7.09 93.7 8 29.87 2.44 7 0.017 I NS 0.469	7.5 1.5 305 8.64 99.9 8.22 27.4 2.13 NS 0.008 U NS 0.542	8.5 1.5 322 8.18 90.4 8.44 20.2 2.07 7 7 0.008 U NS 0.538	6 1.5 293 7.63 99.2 8.56 31.6 2.9 NS 0.008 U NS 0.635	15 1.5 339 7.36 89.6 7.97 25.6 1.13 NS 0.008 U NA 0.704	11 1.5 359.5 6.88 89.4 8.26 25.3 3.14 NS 0.008 U NS 0.61	NM 1.5 314.8 7 100 8.41 32.7 8.2 NS 0.008 U NS 0.632	NM 1 314 7.04 83.9 8.13 24.1 1.4 4 0.008 I NS 0.603
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN)	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L	7.43 1.5 422 7.67 97.4 8.37 27.62 3.97 NS U 0.26 0.745 0.745	NS 1.5 359 5.55 74 8.07 30.4 31.71 NS 0.019 I 0.36 1.15 1.15	9.2 1.5 384 7.12 84.7 7.68 24.1 4.38 NS U 0.90 0.888 0.9	8.56 1.5 385.7 8.05 87.6 7.97 19.5 4.66 NS 0.071 0.84 1.04 1.04	6 1.5 414 7.87 101.8 8.21 28.7 7.15 NS 0.008 U 0.32 0.507 0.514	6.2 1.5 435 6.21 82.9 8.11 30.5 3.12 NS 0.008 U 0.34 0.641 0.645	8.01 1.5 638.9 6.58 77.7 7.89 23.7 3.2 NS 0.036 0.71 0.71 0.71	6 1.5 417 6.95 88 8.31 27.5 8.22 NS 0.008 U 0.30 0.675 0.69	10.2 1.5 363.7 7.52 100.2 8.03 30.4 3.75 NS 0.008 U 0.38 0.613 0.618	8.65 1.5 321.2 9.9 110 8.06 20.5 5.76 NS 0.008 U 0.69 0.693 0.698	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7 3.37 NS 0.027 0.34 0.606 0.606	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5 3.55 5.3 0.008 U 0.30 0.605 0.605	02/17/20 7.8 1.5 373 8.12 96.2 8.49 23.9 2.18 NS 0.008 U 0.28 0.403 0.403	06/03/20 6.35 1.5 701 5.86 77.2 8.31 30.1 3.49 5.5 0.008 U 0.25 0.556	9 1.5 300 4.64 51.1 8.26 27.1 2.4 6.5 0.009 I NS 0.5 0.5	8.8 1.5 303 7.04 86.9 8.72 25.5 3.41 7 0.008 U NS 0.45 0.45	10.25 1.5 346 7.09 93.7 8 29.87 2.44 7 0.017 I NS 0.469 0.469	7.5 1.5 305 8.64 99.9 8.22 27.4 2.13 NS 0.008 U NS 0.542 0.542	8.5 1.5 322 8.18 90.4 8.44 20.2 2.07 7 0.008 U NS 0.538 0.538	6 1.5 293 7.63 99.2 8.56 31.6 2.9 NS 0.008 U NS 0.635 0.806	15 1.5 339 7.36 89.6 7.97 25.6 1.13 NS 0.008 U NA 0.704 0.717	11 1.5 359.5 6.88 89.4 8.26 25.3 3.14 NS 0.008 U NS 0.61 0.632	NM 1.5 314.8 7 100 8.41 32.7 8.2 NS 0.008 U NS 0.632 0.643	NM 1 314 7.04 83.9 8.13 24.1 1.4 4 0.008 I NS 0.603 0.628
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN) Total nitrogen Nitrite/Nitrate	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L	7.43 1.5 422 7.67 97.4 8.37 27.62 3.97 NS U 0.26 0.745 0.745 U	NS 1.5 359 5.55 74 8.07 30.4 31.71 NS 0.019 I 0.36 1.15 1.15 U	9.2 1.5 384 7.12 84.7 7.68 24.1 4.38 NS U 0.90 0.888 0.9 0.012 I	8.56 1.5 385.7 8.05 87.6 7.97 19.5 4.66 NS 0.071 0.84 1.04 1.04 U	6 1.5 414 7.87 101.8 8.21 28.7 7.15 NS 0.008 U 0.32 0.507 0.514 0.007 I	6.2 1.5 435 6.21 82.9 8.11 30.5 3.12 NS 0.008 U 0.34 0.641 0.645 0.004 I	8.01 1.5 638.9 6.58 77.7 7.89 23.7 3.2 NS 0.036 0.71 0.71 0.71 0.004 U	6 1.5 417 6.95 88 8.31 27.5 8.22 NS 0.008 U 0.30 0.675 0.69 0.015 I	10.2 1.5 363.7 7.52 100.2 8.03 30.4 3.75 NS 0.008 U 0.38 0.613 0.618 0.005 I	8.65 1.5 321.2 9.9 110 8.06 20.5 5.76 NS 0.008 U 0.69 0.693 0.698 0.006 I	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7 3.37 NS 0.027 0.34 0.606 0.606 0.006 U	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5 3.55 5.3 0.008 U 0.30 0.605 0.605 0.006 U	02/17/20 7.8 1.5 373 8.12 96.2 8.49 23.9 2.18 NS 0.008 U 0.28 0.403 0.403 0.403 0.006 U	06/03/20 6.35 1.5 701 5.86 77.2 8.31 30.1 3.49 5.5 0.008 U 0.25 0.556 0.556 0.006 U	9 1.5 300 4.64 51.1 8.26 27.1 2.4 6.5 0.009 I NS 0.5 0.5 0.006 U	8.8 1.5 303 7.04 86.9 8.72 25.5 3.41 7 0.008 U NS 0.45 0.45 0.006 U	10.25 1.5 346 7.09 93.7 8 29.87 2.44 7 0.017 I NS 0.469 0.469 0.006 U	7.5 1.5 305 8.64 99.9 8.22 27.4 2.13 NS 0.008 U NS 0.542 0.542 0.006 U	8.5 1.5 322 8.18 90.4 8.44 20.2 2.07 7 0.008 U NS 0.538 0.538 0.006 U	6 1.5 293 7.63 99.2 8.56 31.6 2.9 NS 0.008 U NS 0.635 0.806 0.171	15 1.5 339 7.36 89.6 7.97 25.6 1.13 NS 0.008 U NA 0.704 0.717 0.013 I	11 1.5 359.5 6.88 89.4 8.26 25.3 3.14 NS 0.008 U NS 0.61 0.632 0.022 I	NM 1.5 314.8 7 100 8.41 32.7 8.2 NS 0.008 U NS 0.632 0.643 0.011 I	NM 1 314 7.04 83.9 8.13 24.1 1.4 4 0.008 I NS 0.603 0.628 0.025
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field Dissolved oxygen (DO), field Dissolved oxygen (DO), field PH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN) Total nitrogen Nitrite/Nitrate Ortho phosphorus (Field Filtered)	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L mg/L	7.43 1.5 422 7.67 97.4 8.37 27.62 3.97 NS U 0.26 0.745 0.745 U 0.077	NS 1.5 359 5.55 74 8.07 30.4 31.71 NS 0.019 I 0.36 1.15 1.15 U 0.07	9.2 1.5 384 7.12 84.7 7.68 24.1 4.38 NS U 0.90 0.888 0.9 0.012 I 0.064	8.56 1.5 385.7 8.05 87.6 7.97 19.5 4.66 NS 0.071 0.84 1.04 1.04 U 0.015	6 1.5 414 7.87 101.8 8.21 28.7 7.15 NS 0.008 U 0.32 0.507 0.514 0.007 I 0.028	6.2 1.5 435 6.21 82.9 8.11 30.5 3.12 NS 0.008 U 0.34 0.641 0.645 0.004 I 0.05	8.01 1.5 638.9 6.58 77.7 7.89 23.7 3.2 NS 0.036 0.71 0.71 0.71 0.004 U 0.025	6 1.5 417 6.95 88 8.31 27.5 8.22 NS 0.008 U 0.30 0.675 0.69 0.015 I 0.015	10.2 1.5 363.7 7.52 100.2 8.03 30.4 3.75 NS 0.008 U 0.38 0.613 0.618 0.005 I 0.02	8.65 1.5 321.2 9.9 110 8.06 20.5 5.76 NS 0.008 U 0.69 0.693 0.698 0.006 I 0.008	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7 3.37 NS 0.027 0.34 0.606 0.606 0.606 0.006 U 0.002 U	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5 3.55 5.3 0.008 U 0.30 0.605 0.605 0.605 0.006 U 0.055	02/17/20 7.8 1.5 373 8.12 96.2 8.49 23.9 2.18 NS 0.008 U 0.28 0.403 0.403 0.403 0.006 U 0.035	06/03/20 6.35 1.5 701 5.86 77.2 8.31 30.1 3.49 5.5 0.008 U 0.25 0.556 0.006 U 0.053	9 1.5 300 4.64 51.1 8.26 27.1 2.4 6.5 0.009 I NS 0.5 0.5 0.06 U 0.0288	8.8 1.5 303 7.04 86.9 8.72 25.5 3.41 7 0.008 U NS 0.45 0.45 0.006 U 0.026	10.25 1.5 346 7.09 93.7 8 29.87 2.44 7 0.017 I NS 0.469 0.469 0.006 U 0.016	7.5 1.5 305 8.64 99.9 8.22 27.4 2.13 NS 0.008 U NS 0.542 0.542 0.006 U 0.015	8.5 1.5 322 8.18 90.4 8.44 20.2 2.07 7 0.008 U NS 0.538 0.538 0.006 U 0.01	6 1.5 293 7.63 99.2 8.56 31.6 2.9 NS 0.008 U NS 0.635 0.806 0.171 0.01	15 1.5 339 7.36 89.6 7.97 25.6 1.13 NS 0.008 U NA 0.704 0.717 0.013 I 0.005 I	11 1.5 359.5 6.88 89.4 8.26 25.3 3.14 NS 0.008 U NS 0.61 0.632 0.022 I 0.016	NM 1.5 314.8 7 100 8.41 32.7 8.2 NS 0.008 U NS 0.632 0.643 0.011 I 0.026	NM 1 314 7.04 83.9 8.13 24.1 1.4 4 0.008 I NS 0.603 0.628 0.025 0.015
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Determine Mitride/Nitrate Ortho phosphorus (Field Filtered) Total phosphorus	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L mg/L mg/L	7.43 1.5 422 7.67 97.4 8.37 27.62 3.97 NS U 0.26 0.745 0.745 U 0.077 0.079	NS 1.5 359 5.55 74 8.07 30.4 31.71 NS 0.019 I 0.36 1.15 1.15 U 0.07 0.087	9.2 1.5 384 7.12 84.7 7.68 24.1 4.38 NS U 0.90 0.888 0.9 0.012 I 0.064 0.066	8.56 1.5 385.7 8.05 87.6 7.97 19.5 4.66 NS 0.071 0.84 1.04 1.04 U 0.015 0.031 I	6 1.5 414 7.87 101.8 8.21 28.7 7.15 NS 0.008 U 0.32 0.507 0.514 0.007 I 0.028 0.054	6.2 1.5 435 6.21 82.9 8.11 30.5 3.12 NS 0.008 U 0.34 0.641 0.645 0.004 I 0.05 0.065	8.01 1.5 638.9 6.58 77.7 7.89 23.7 3.2 NS 0.036 0.71 0.71 0.71 0.004 U 0.025 0.042	6 1.5 417 6.95 88 8.31 27.5 8.22 NS 0.008 U 0.30 0.675 0.69 0.015 I 0.015 0.023 I	10.2 1.5 363.7 7.52 100.2 8.03 30.4 3.75 NS 0.008 U 0.38 0.613 0.613 0.618 0.005 I 0.02 0.008 U	8.65 1.5 321.2 9.9 110 8.06 20.5 5.76 NS 0.008 U 0.69 0.693 0.693 0.698 0.006 I 0.008 U	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7 3.37 NS 0.027 0.027 0.34 0.606 0.606 0.606 0.006 U 0.002 U 0.008 U	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5 3.55 5.3 0.008 U 0.30 0.605 0.605 0.605 0.605 0.006 U 0.055 0.073	02/17/20 7.8 1.5 373 8.12 96.2 8.49 23.9 2.18 NS 0.008 U 0.28 0.403 0.403 0.403 0.403 0.403 0.006 U 0.035 0.069	06/03/20 6.35 1.5 701 5.86 77.2 8.31 30.1 3.49 5.5 0.008 U 0.25 0.556 0.006 U 0.053 0.062	9 1.5 300 4.64 51.1 8.26 27.1 2.4 6.5 0.009 I NS 0.5 0.5 0.05 0.006 U 0.0288 0.012 I	8.8 1.5 303 7.04 86.9 8.72 25.5 3.41 7 0.008 U NS 0.45 0.045 0.006 U 0.026 0.032	10.25 1.5 346 7.09 93.7 8 29.87 2.44 7 0.017 I NS 0.469 0.069 0.066 U 0.016 0.017 I	7.5 1.5 305 8.64 99.9 8.22 27.4 2.13 NS 0.008 U NS 0.542 0.542 0.006 U 0.015 0.036	8.5 1.5 322 8.18 90.4 8.44 20.2 2.07 7 0.008 U NS 0.538 0.0538 0.0538 0.006 U 0.01 0.020 I	6 1.5 293 7.63 99.2 8.56 31.6 2.9 NS 0.008 U NS 0.635 0.806 0.171 0.01 0.021 I	15 1.5 339 7.36 89.6 7.97 25.6 1.13 NS 0.008 U NA 0.704 0.717 0.013 I 0.005 I 0.031 I	11 1.5 359.5 6.88 89.4 8.26 25.3 3.14 NS 0.008 U NS 0.61 0.632 0.022 I 0.016 0.028 I	NM 1.5 314.8 7 100 8.41 3.2.7 8.2 NS 0.008 U NS 0.632 0.643 0.011 I 0.026 0.032	NM 1 314 7.04 83.9 8.13 24.1 1.4 4 0.008 I NS 0.603 0.628 0.025 0.015 0.028 I
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN) Total nitrogen Nitrite/Nitrate Ortho phosphorus (Field Filtered) Total phosphorus Chlorophyll	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	7.43 1.5 422 7.67 97.4 8.37 27.62 3.97 NS U 0.26 0.745 0.745 U 0.077 0.079 6.59	NS 1.5 359 5.55 74 8.07 30.4 31.71 NS 0.019 I 0.36 1.15 1.15 U 0.07 0.087 7.28	9.2 1.5 384 7.12 84.7 7.68 24.1 4.38 NS U 0.90 0.888 0.9 0.012 I 0.064 0.066 8.08	8.56 1.5 385.7 8.05 87.6 7.97 19.5 4.66 NS 0.071 0.84 1.04 1.04 1.04 U 0.015 0.0311 11.7	6 1.5 414 7.87 101.8 8.21 28.7 7.15 NS 0.008 U 0.32 0.507 0.514 0.0028 0.054 7.76	6.2 1.5 435 6.21 82.9 8.11 30.5 3.12 NS 0.008 U 0.34 0.641 0.645 0.004 I 0.05 0.065 7.13	8.01 1.5 638.9 6.58 77.7 7.89 23.7 3.2 NS 0.036 0.71 0.71 0.71 0.025 0.042 5.42	6 1.5 417 6.95 88 8.31 27.5 8.22 NS 0.008 U 0.30 0.675 0.69 0.015 I 0.015 I 0.023 I 8.35	10.2 1.5 363.7 7.52 100.2 8.03 30.4 3.75 NS 0.008 U 0.38 0.613 0.613 0.618 0.005 I 0.02 0.008 U 9.06	8.65 1.5 321.2 9.9 110 8.06 20.5 5.76 NS 0.008 U 0.693 0.693 0.698 0.006 I 0.008 0.009 I 8.8	V 04/16/19 8.31 1.5 411.8 6.88 85.9 8.25 26.7 3.37 NS 0.027 0.34 0.606 0.606 0.006 U 0.002 U 0.008 U 5.28	/Q Locatio 10/24/19 10.4 1.5 346.4 6.27 81 8.27 28.5 3.55 5.3 0.008 U 0.008 U 0.30 0.605 0.605 0.006 U 0.055 0.006 U 0.055 0.073 9.11	02/17/20 7.8 1.5 373 8.12 96.2 8.49 23.9 2.18 NS 0.008 U 0.28 0.403 0.403 0.403 0.403 0.006 U 0.035 0.069 4.34	06/03/20 6.35 1.5 701 5.86 77.2 8.31 30.1 3.49 5.5 0.008 U 0.25 0.556 0.556 0.006 U 0.053 0.062 5.11	9 1.5 300 4.64 51.1 8.26 27.1 2.4 6.5 0.009 I NS 0.5 0.5 0.006 U 0.0288 0.012 I 6.13	8.8 1.5 303 7.04 86.9 8.72 25.5 3.41 7 0.008 U NS 0.45 0.045 0.006 U 0.026 0.032 2.04	10.25 1.5 346 7.09 93.7 8 29.87 2.44 7 0.017 I NS 0.469 0.469 0.469 0.469 0.469 0.016 0.017 I 5.95	7.5 1.5 305 8.64 99.9 8.22 27.4 2.13 NS 0.008 U NS 0.542 0.006 U 0.015 0.036 7.37	8.5 1.5 322 8.18 90.4 8.44 20.2 2.07 7 0.008 U NS 0.538 0.538 0.538 0.006 U 0.01 0.020 I 3.72	6 1.5 293 7.63 99.2 8.56 31.6 2.9 NS 0.008 U NS 0.635 0.806 0.171 0.01 0.021 I 11.6	15 1.5 339 7.36 89.6 7.97 25.6 1.13 NS 0.008 U NA 0.704 0.717 0.013 I 0.005 I 0.031 I 17.7	11 1.5 359.5 6.88 89.4 8.26 25.3 3.14 NS 0.008 U NS 0.61 0.632 0.022 I 0.016 0.028 I 5.26	NM 1.5 314.8 7 100 8.41 32.7 8.2 NS 0.008 U NS 0.632 0.643 0.011 I 0.026 0.032 6.95	NM 1 314 7.04 83.9 8.13 24.1 1.4 4 0.008 I NS 0.603 0.628 0.025 0.015 0.028 I 7.16

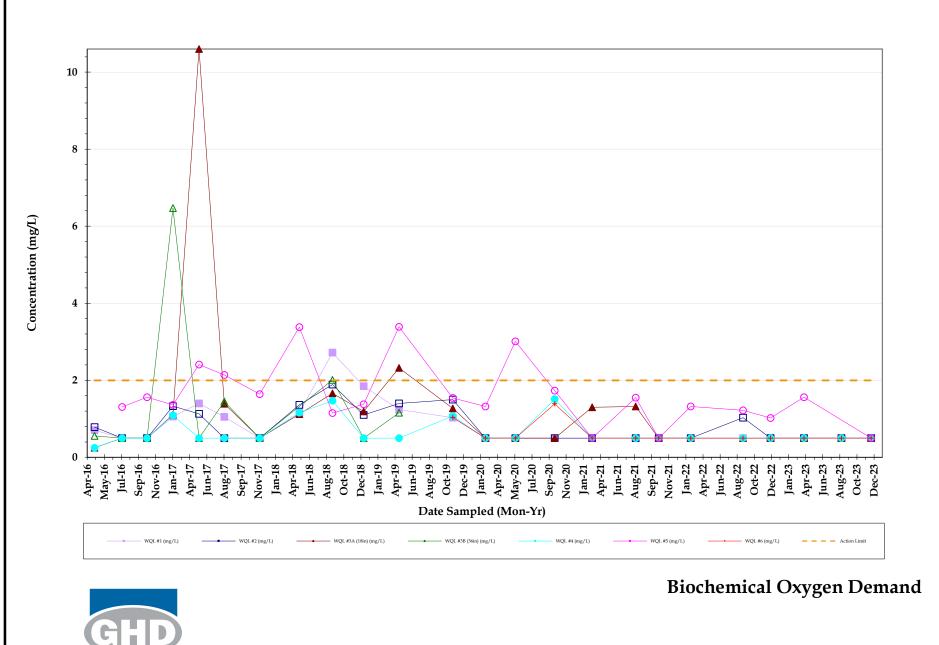
Table 1

Analytical Results Summary Surface Water Quality Monitoring Miromar Lakes, Fort Myers, Florida November 2023

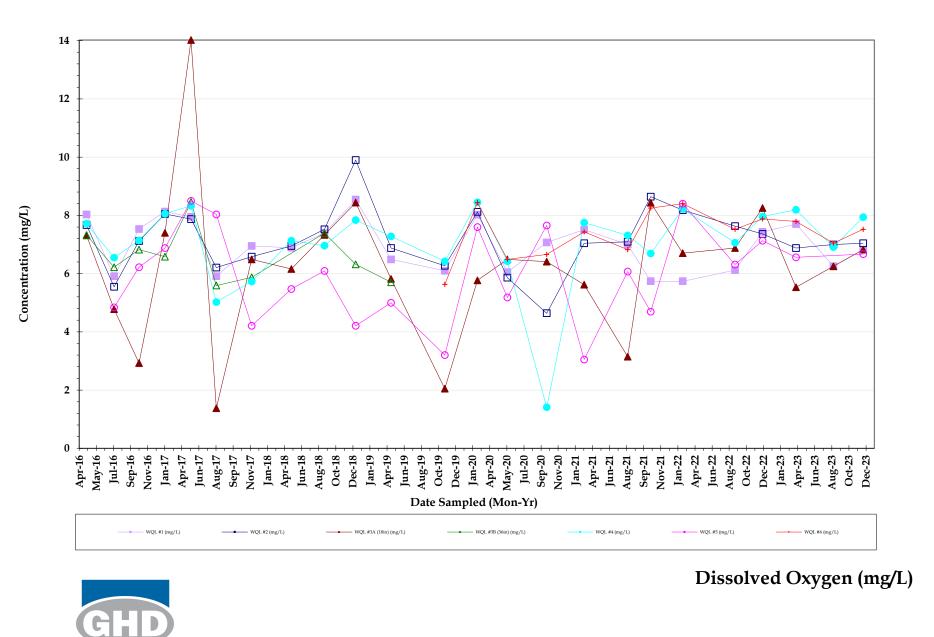
Sample Location/Sample ID:												W		#3A / WQI	34										
Sample Date:		04/27/16	08/03/16	10/31/16	01/31/17	05/04/17	08/02/17	12/06/17	04/26/18	08/22/18	12/11/18	04/16/19		02/17/20	06/03/20	10/21/20	03/03/21	08/05/21	10/26/21	02/17/22	08/22/22	11/28/22	03/27/23	08/07/23	11/21/23
Field Parameters	Units	04/2//10	00/03/10	10/31/10	01/31/17	05/04/17	06/02/17	12/00/17	04/20/10	00/22/10	12/11/10	04/10/19	10/24/19	02/17/20	00/03/20	10/21/20	03/03/21	00/05/21	10/20/21	02/11/22	00/22/22	11/20/22	03/21/23	00/07/23	11/21/23
Total Water Depth	Feet	3.78	3.64	3.52	2.81	1.5	4.6	3.35	3.2	3.6	5.87	2.95	4.5	3	1.5	4	3	3.33	3.75	2	3.33	4	2	NM	NM
Sample Depth	Feet	1.5	1.5	1.5	1.5	1.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1
Conductivity, field	umhos/cm	406	329	255	375.7	430	200.4	339	418.9	365.1	323	391.9	373.2	381	690	293	297	363	313	321	296	330	344.4	331.5	305
Dissolved oxygen (DO), field	mg/L	7.31	4.78	2.93	7.4	14.02	1.38	6.49	6.16	7.33	8.44	5.82	2.05	5.77	6.49	6.41	5.62	3.15	8.43	6.7	6.88	8.25	5.53	6.25	6.82
Dissolved oxygen (DO), field	%	91.8	62.9	34.3	81.5	198	17.42	76.4	78.2	97.9	94.3	72.7	25.7	68.5	85.4	80.5	70.2	39	98.9	73.5	93.2	96.4	68.2	87.2	81
pH, field	s.u.	8.44	8	6.99	7.96	9.32	6.91	7.97	8.15	8.13	7.53	8.21	7.34	7.93	8.44	8.38	8.49	7.16	7.97	8.49	8.57	8.07	8.24	8.14	8.1
Temperature, field	Deg C	27	29.7	23.2	20.1	33.7	27.3	23.5	27.6	30.5	20.8	26.7	26.8	23.77	29.3	27	25.4	26.24	27.6	19.7	31.3	25.8	25.5	32.7	24
Turbidity, field	NTU	7.64	78.77	3.48	5.42	86.9	2.99	3.05	3.94	3.63	4.2	2.2	2.79	1.31	3.49	2.76	4.13	1.77	2.7	2.17	2.11	1.32	2.45	9.6	2.02
Secchi Disk	Depth	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	Bottom	Bottom	Bottom	4	3	3.33	NS	2	NS	NS	NS	NS	3.5
Wet Parameters	Units												Dottom	Dottom	Dottom			0.00							0.0
Ammonia-N	mg/L	U	0.029 I	0.044	0.027 I	0.008 U	0.008 U	0.0091	U	0.023 I	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U	0.009 I	0.008 U	0.035	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U
TAN criteria calculation	mg/L	0.25	0.42	1.54	0.82	0.04	1.22	0.65	0.38	0.32	1.29	0.37	1.02	0.67	0.21	NS	NS	NS	NS	NS	NS	NA	NS	NS	NS
Total kjeldahl nitrogen (TKN)	mg/L	0.581	0.949	1.11	1.06	3.73	0.642	0.634	0.645	0.621	0.949	0.598	0.635	0.451	0.51	0.216	0.526	0.546	0.565	0.607	0.809	0.694	0.558	0.644	0.671
Total nitrogen	mg/L	0.581	0.949	1.13	1.06	3.73	0.65	0.634	0.658	0.626	0.954	0.598	0.635	0.451	0.51	0.216	0.526	0.546	0.565	0.607	0.982	0.71	0.57	0.659	0.689
Nitrite/Nitrate	mg/L	U	U	0.021	U	0.008 I	0.008	0.004 U	0.013 I	0.005 I	0.006 I	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.173	0.016 I	0.012 I	0.015 I	0.018 I
Ortho phosphorus (Field Filtered)	mg/L	0.073	0.012	0.051	0.012	0.018	0.029	0.031	0.016	0.02	0.025	0.014	0.06	0.043	0.048	0.0199	0.03	0.017	0.012	0.009	0.017	0.013	0.024	0.017	0.009
Total phosphorus	mg/L	0.088	0.026 I	0.052	0.033	0.09	0.039	0.048	0.024 I	0.008 U	0.019 I	0.018 I	0.066	0.069	0.064	0.012 I	0.046	0.021 I	0.017 I	0.022	0.020 I	0.013 I	0.025 I	0.024 I	0.016 I
Chlorophyll	mg/m3	5.76	8.71	10.1	10.4	249	10.1	4.83	7.85	10.6	8.15	4.6	7.88	3.79	5.1	5.52	4	7.06	7.99	4.09	9.16	15.4	6.22	7.66	7.78
Total suspended solids (TSS)	mg/L	7.06	6.42	5.11	7.2	95	3.8	4	3.6	6	4.33	2.6	2.4	1.50 I	4.8	2.4	4.2	2.00 I	3	1.75 I	1.67 I	5	3.27	2.08 I	1.60 I
Biochemical oxygen demand (total BOD5)	mg/L	U	U	U	1.111	10.6	1.39	1 U	1.12	1.66 I	1.191	2.32	1.27 I	1 U	1 U	1 U	1.30 I	1.32	1 U	1 U	1.0 U	1 U	1 U	1 U	1 U
																			-						
Sample Location/Sample ID:				T			ation #3B /			1		1					1		Q Location	-	1				
Sample Date:		04/27/16	08/03/16	10/31/16	01/31/17				04/26/18	08/22/18	12/11/18	04/16/19	10/24/19	02/17/20	06/03/20	10/21/20	03/03/21			#6 02/17/22	08/22/22	11/28/22	03/27/23	08/07/23	11/21/23
Sample Date: Field Parameters	Units						08/02/17	12/06/17										08/05/21	10/26/21	02/17/22					
Sample Date: Field Parameters Total Water Depth	Feet	3.78	4	3.52	2.98	05/04/17	08/02/17 4.6		3.2	3.6	5.87	3.5	12.5	17.6	15.5	10.5	14.4	08/05/21 12.3	10/26/21 10.5	02/17/22 14	5.5	19	13	NM	11/21/23 NM
Sample Date: Field Parameters Total Water Depth Sample Depth	Feet Feet	3.78 3	4 3	3.52 3	2.98 2.5	05/04/17 2 1.5	08/02/17 4.6 3	12/06/17 6.94 3	3.2 NS	3.6 3	5.87 3	3.5 3	12.5 3	17.6 3	15.5 3	10.5 1.5	14.4 3	08/05/21 12.3 3	10/26/21 10.5 3	02/17/22 14 1.5	5.5 1.5	19 1.5	13 1.5	NM 1.5	NM 1
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field	Feet Feet umhos/cm	3.78 3 405	4 3 341	3.52 3 369	2.98 2.5 313.1	05/04/17 2 1.5 406	08/02/17 4.6 3 384.1	12/06/17 6.94 3 338.6	3.2 NS NS	3.6 3 354.5	5.87 3 322.4	3.5 3 391.3	12.5 3 340.8	17.6 3 362	15.5 3 688	10.5 1.5 290	14.4 3 295	08/05/21 12.3 3 365	10/26/21 10.5 3 305	02/17/22 14 1.5 319	5.5 1.5 294	19 1.5 324	13 1.5 346.1	NM 1.5 318.4	NM 1 300.8
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field	Feet Feet umhos/cm mg/L	3.78 3 405 7.32	4 3 341 6.22	3.52 3 369 6.82	2.98 2.5 313.1 6.58	05/04/17 2 1.5 406 8.46	08/02/17 4.6 3 384.1 5.59	12/06/17 6.94 3 338.6 5.87	3.2 NS NS NS	3.6 3 354.5 7.39	5.87 3 322.4 6.32	3.5 3 391.3 5.7	12.5 3 340.8 5.63	17.6 3 362 8.44	15.5 3 688 6.49	10.5 1.5 290 6.66	14.4 3 295 7.43	08/05/21 12.3 3 365 6.82	10/26/21 10.5 3 305 8.25	02/17/22 14 1.5 319 8.4	5.5 1.5 294 7.52	19 1.5 324 7.88	13 1.5 346.1 7.79	NM 1.5 318.4 7.05	NM 1 300.8 7.52
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field	Feet Feet umhos/cm mg/L %	3.78 3 405 7.32 91.1	4 3 341 6.22 82.8	3.52 3 369 6.82 81.2	2.98 2.5 313.1 6.58 67.9	05/04/17 2 1.5 406 8.46 109.3	08/02/17 4.6 3 384.1 5.59 74	12/06/17 6.94 3 338.6 5.87 68.8	3.2 NS NS NS NS	3.6 3 354.5 7.39 98.8	5.87 3 322.4 6.32 70.6	3.5 3 391.3 5.7 71.2	12.5 3 340.8 5.63 72.4	17.6 3 362 8.44 99.2	15.5 3 688 6.49 85.7	10.5 1.5 290 6.66 83.4	14.4 3 295 7.43 90.4	08/05/21 12.3 3 365 6.82 90.3	10/26/21 10.5 3 305 8.25 85.4	02/17/22 14 1.5 319 8.4 90.8	5.5 1.5 294 7.52 99.8	19 1.5 324 7.88 96.1	13 1.5 346.1 7.79 94.4	NM 1.5 318.4 7.05 99.3	NM 1 300.8 7.52 90
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field	Feet Feet umhos/cm mg/L % s.u.	3.78 3 405 7.32 91.1 8.46	4 3 341 6.22 82.8 8.14	3.52 3 369 6.82 81.2 7.68	2.98 2.5 313.1 6.58 67.9 7.77	05/04/17 2 1.5 406 8.46 109.3 8.12	08/02/17 4.6 3 384.1 5.59 74 8.1	12/06/17 6.94 3 338.6 5.87 68.8 8	3.2 NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18	5.87 3 322.4 6.32 70.6 8.08	3.5 3 391.3 5.7 71.2 8.22	12.5 3 340.8 5.63 72.4 8.16	17.6 3 362 8.44 99.2 8.5	15.5 3 688 6.49 85.7 8.51	10.5 1.5 290 6.66 83.4 8.63	14.4 3 295 7.43 90.4 8.74	08/05/21 12.3 3 365 6.82 90.3 7.59	10/26/21 10.5 3 305 8.25 85.4 8.25	02/17/22 14 1.5 319 8.4 90.8 8.48	5.5 1.5 294 7.52 99.8 8.76	19 1.5 324 7.88 96.1 8.12	13 1.5 346.1 7.79 94.4 8.26	NM 1.5 318.4 7.05 99.3 8.52	NM 1 300.8 7.52 90 8.28
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field	Feet Feet umhos/cm mg/L % s.u. Deg C	3.78 3 405 7.32 91.1 8.46 26.55	4 3 341 6.22 82.8 8.14 30.3	3.52 3 369 6.82 81.2 7.68 24.1	2.98 2.5 313.1 6.58 67.9 7.77 16.9	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6	08/02/17 4.6 3 384.1 5.59 74 8.1 30	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3	3.2 NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6	5.87 3 322.4 6.32 70.6 8.08 20.8	3.5 3 391.3 5.7 71.2 8.22 26.7	12.5 3 340.8 5.63 72.4 8.16 28.3	17.6 3 362 8.44 99.2 8.5 23.28	15.5 3 688 6.49 85.7 8.51 29.4	10.5 1.5 290 6.66 83.4 8.63 29.3	14.4 3 295 7.43 90.4 8.74 25.2	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6	5.5 1.5 294 7.52 99.8 8.76 31.4	19 1.5 324 7.88 96.1 8.12 25.5	13 1.5 346.1 7.79 94.4 8.26 25.1	NM 1.5 318.4 7.05 99.3 8.52 32.4	NM 1 300.8 7.52 90 8.28 24.1
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field	Feet Feet umhos/cm mg/L % s.u. Deg C NTU	3.78 3 405 7.32 91.1 8.46 26.55 7.98	4 341 6.22 82.8 8.14 30.3 10.03	3.52 3 369 6.82 81.2 7.68 24.1 3.15	2.98 2.5 313.1 6.58 67.9 7.77 16.9 21.38	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6 3.93	08/02/17 4.6 3 384.1 5.59 74 8.1 30 4.15	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3 2.84	3.2 NS NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6 26.26	5.87 3 322.4 6.32 70.6 8.08 20.8 7.1	3.5 3 391.3 5.7 71.2 8.22 26.7 2.17	12.5 3 340.8 5.63 72.4 8.16 28.3 4.85	17.6 3 362 8.44 99.2 8.5 23.28 1.48	15.5 3 688 6.49 85.7 8.51 29.4 2.83	10.5 1.5 290 6.66 83.4 8.63 29.3 2.13	14.4 3 295 7.43 90.4 8.74 25.2 1.75	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07 2.19	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6 1.79	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6 2.79	5.5 1.5 294 7.52 99.8 8.76 31.4 2.89	19 1.5 324 7.88 96.1 8.12 25.5 1.38	13 1.5 346.1 7.79 94.4 8.26 25.1 2.5	NM 1.5 318.4 7.05 99.3 8.52 32.4 10.1	NM 1 300.8 7.52 90 8.28 24.1 2.36
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth	3.78 3 405 7.32 91.1 8.46 26.55	4 3 341 6.22 82.8 8.14 30.3	3.52 3 369 6.82 81.2 7.68 24.1	2.98 2.5 313.1 6.58 67.9 7.77 16.9	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6	08/02/17 4.6 3 384.1 5.59 74 8.1 30	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3	3.2 NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6	5.87 3 322.4 6.32 70.6 8.08 20.8	3.5 3 391.3 5.7 71.2 8.22 26.7	12.5 3 340.8 5.63 72.4 8.16 28.3	17.6 3 362 8.44 99.2 8.5 23.28	15.5 3 688 6.49 85.7 8.51 29.4	10.5 1.5 290 6.66 83.4 8.63 29.3	14.4 3 295 7.43 90.4 8.74 25.2	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6	5.5 1.5 294 7.52 99.8 8.76 31.4	19 1.5 324 7.88 96.1 8.12 25.5	13 1.5 346.1 7.79 94.4 8.26 25.1	NM 1.5 318.4 7.05 99.3 8.52 32.4	NM 1 300.8 7.52 90 8.28 24.1
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units	3.78 3 405 7.32 91.1 8.46 26.55 7.98 NS	4 341 6.22 82.8 8.14 30.3 10.03 NS	3.52 3 369 6.82 81.2 7.68 24.1 3.15 NS	2.98 2.5 313.1 6.58 67.9 7.77 16.9 21.38 NS	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6 3.93 NS	08/02/17 4.6 3 384.1 5.59 74 8.1 30 4.15 NS	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3 2.84 NS	3.2 NS NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6 26.26 NS	5.87 3 322.4 6.32 70.6 8.08 20.8 7.1 NS	3.5 3 391.3 5.7 71.2 8.22 26.7 2.17 NS	12.5 3 340.8 5.63 72.4 8.16 28.3 4.85 5.8	17.6 3 362 8.44 99.2 8.5 23.28 1.48 8	15.5 3 688 6.49 85.7 8.51 29.4 2.83 7.2	10.5 1.5 290 6.66 83.4 8.63 29.3 2.13 7	14.4 3 295 7.43 90.4 8.74 25.2 1.75 7.5	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07 2.19 6.4	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6 1.79 NS	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6 2.79 7	5.5 1.5 294 7.52 99.8 8.76 31.4 2.89 NS	19 1.5 324 7.88 96.1 8.12 25.5 1.38 NS	13 1.5 346.1 7.79 94.4 8.26 25.1 2.5 NS	NM 1.5 318.4 7.05 99.3 8.52 32.4 10.1 NS	NM 1 300.8 7.52 90 8.28 24.1 2.36 3.5
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L	3.78 3 405 7.32 91.1 8.46 26.55 7.98 NS U	4 3 341 6.22 82.8 8.14 30.3 10.03 NS 0.15 I	3.52 3 369 6.82 81.2 7.68 24.1 3.15 NS	2.98 2.5 313.1 6.58 67.9 7.77 16.9 21.38 NS	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6 3.93 NS 0.008 U	08/02/17 4.6 3 384.1 5.59 74 8.1 30 4.15 NS 0.008 U	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3 2.84 NS 0.028 I	3.2 NS NS NS NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6 26.26 NS 0.015 I	5.87 3 322.4 6.32 70.6 8.08 20.8 7.1 NS 0.008 U	3.5 391.3 5.7 71.2 8.22 26.7 2.17 NS 0.008 U	12.5 3 340.8 5.63 72.4 8.16 28.3 4.85 5.8 0.008 U	17.6 3 362 8.44 99.2 8.5 23.28 1.48 8 0.008 U	15.5 3 688 6.49 85.7 8.51 29.4 2.83 7.2 0.008 U	10.5 1.5 290 6.66 83.4 8.63 29.3 2.13 7 7	14.4 3 295 7.43 90.4 8.74 25.2 1.75 7.5 0.008 U	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07 2.19 6.4 0.012 I	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6 1.79 NS 0.008 U	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6 2.79 7 7 0.008 U	5.5 1.5 294 7.52 99.8 8.76 31.4 2.89 NS 0.008 U	19 1.5 324 7.88 96.1 8.12 25.5 1.38 NS 0.008 U	13 1.5 346.1 7.79 94.4 8.26 25.1 2.5 NS 0.008 U	NM 1.5 318.4 7.05 99.3 8.52 32.4 10.1 NS 0.008 U	NM 1 300.8 7.52 90 8.28 24.1 2.36 3.5 0.008 U
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L	3.78 3 405 7.32 91.1 8.46 26.55 7.98 NS U 0.24	4 3 341 6.22 82.8 8.14 30.3 10.03 NS 0.151 0.32	3.52 3 369 6.82 81.2 7.68 24.1 3.15 NS U 0.90	2.98 2.5 313.1 6.58 67.9 7.77 16.9 21.38 NS 0.097 1.29	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6 3.93 NS 0.008 U 0.37	08/02/17 4.6 3 384.1 5.59 74 8.1 30 4.15 NS 0.008 U 0.35	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3 2.84 NS 0.028 I 0.63	3.2 NS NS NS NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6 26.26 NS 0.015 I 0.30	5.87 3 322.4 6.32 70.6 8.08 20.8 7.1 NS 0.008 U 0.66	3.5 391.3 5.7 71.2 8.22 26.7 2.17 NS 0.008 U 0.36	12.5 3 340.8 5.63 72.4 8.16 28.3 4.85 5.8 0.008 U 0.36	17.6 3 362 8.44 99.2 8.5 23.28 1.48 8 0.008 U 0.28	15.5 3 688 6.49 85.7 8.51 29.4 2.83 7.2 0.008 U 0.19	10.5 1.5 290 6.66 83.4 8.63 29.3 2.13 7 7 0.009 I NS	14.4 3 295 7.43 90.4 8.74 25.2 1.75 7.5 0.008 U NS	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07 2.19 6.4 0.012 I NS	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6 1.79 NS 0.008 U NS	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6 2.79 7 0.008 U NS	5.5 1.5 294 7.52 99.8 8.76 31.4 2.89 NS 0.008 U NS	19 1.5 324 7.88 96.1 8.12 25.5 1.38 NS 0.008 U NA	13 1.5 346.1 7.79 94.4 8.26 25.1 2.5 NS 0.008 U NS	NM 1.5 318.4 7.05 99.3 8.52 32.4 10.1 NS 0.008 U NS	NM 1 300.8 7.52 90 8.28 24.1 2.36 3.5 3.5 0.008 U NS
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN)	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L	3.78 3 405 7.32 91.1 8.46 26.55 7.98 NS U 0.24 0.736	4 3 341 6.22 82.8 8.14 30.3 10.03 NS 0.151 0.32 0.88	3.52 3 369 6.82 81.2 7.68 24.1 3.15 NS U 0.90 1.04	2.98 2.5 313.1 6.58 67.9 7.77 16.9 21.38 NS 0.097 1.29 2.9	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6 3.93 NS 0.008 U 0.37 0.462	08/02/17 4.6 3 384.1 5.59 74 8.1 30 4.15 NS 0.008 U 0.35 0.715	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3 2.84 NS 0.028 I 0.63 0.731	3.2 NS NS NS NS NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6 26.26 NS 0.015 I 0.30 0.757	5.87 3 322.4 6.32 70.6 8.08 20.8 7.1 NS 0.008 U 0.66 0.722	3.5 391.3 5.7 71.2 8.22 26.7 2.17 NS 0.008 U 0.36 0.683	12.5 3 340.8 5.63 72.4 8.16 28.3 4.85 5.8 0.008 U 0.36 0.612	17.6 3 362 8.44 99.2 8.5 23.28 1.48 8 0.008 U 0.28 0.414	15.5 3 688 6.49 85.7 8.51 29.4 2.83 7.2 0.008 U 0.19 0.49	10.5 1.5 290 6.66 83.4 8.63 29.3 2.13 7 7 0.009 I NS 0.05 U	14.4 3 295 7.43 90.4 8.74 25.2 1.75 7.5 0.008 U NS 0.559	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07 2.19 6.4 0.012 I NS 0.448	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6 1.79 NS 0.008 U NS 0.496	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6 2.79 7 0.008 U NS 0.782	5.5 1.5 294 7.52 99.8 8.76 31.4 2.89 NS 0.008 U NS 0.539	19 1.5 324 7.88 96.1 8.12 25.5 1.38 NS 0.008 U NA 0.656	13 1.5 346.1 7.79 94.4 8.26 25.1 2.5 NS 0.008 U NS 0.658	NM 1.5 318.4 7.05 99.3 8.52 32.4 10.1 NS 0.008 U NS 0.618	NM 1 300.8 7.52 90 8.28 24.1 2.36 3.5 3.5 0.008 U NS 0.652
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN)	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L	3.78 3 405 7.32 91.1 8.46 26.55 7.98 NS U 0.24 0.736 0.744	4 3 341 6.22 82.8 8.14 30.3 10.03 NS 0.151 0.32 0.88 0.88	3.52 3 369 6.82 81.2 7.68 24.1 3.15 NS U 0.90 1.04 1.05	2.98 2.5 313.1 6.58 67.9 7.77 16.9 21.38 NS 0.097 1.29 2.9 2.9	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6 3.93 NS 0.008 U 0.37 0.462 0.472	08/02/17 4.6 3 384.1 5.59 74 8.1 30 4.15 NS 0.008 U 0.35 0.715 0.715	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3 2.84 NS 0.028 I 0.63 0.731 0.731	3.2 NS NS NS NS NS NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6 26.26 NS 0.015 I 0.30 0.757 0.763	5.87 3 322.4 6.32 70.6 8.08 20.8 7.1 NS 0.008 U 0.66 0.722 0.727	3.5 391.3 5.7 71.2 8.22 26.7 2.17 NS 0.008 U 0.36 0.683 0.683	12.5 3 340.8 5.63 72.4 8.16 28.3 4.85 5.8 0.008 U 0.36 0.612 0.612	17.6 3 362 8.44 99.2 8.5 23.28 1.48 8 0.008 U 0.28 0.414 0.414	15.5 3 688 6.49 85.7 8.51 29.4 2.83 7.2 0.008 U 0.19 0.49	10.5 1.5 290 6.66 83.4 8.63 29.3 2.13 7 0.009 I NS 0.05 U 0.05 U	14.4 3 295 7.43 90.4 8.74 25.2 1.75 7.5 0.008 U NS 0.559 0.559	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07 2.19 6.4 0.012 I NS 0.448 0.448	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6 1.79 NS 0.008 U NS 0.496 0.496	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6 2.79 7 0.008 U NS 0.782 0.782	5.5 1.5 294 7.52 99.8 8.76 31.4 2.89 NS 0.008 U NS 0.008 U NS 0.539	19 1.5 324 7.88 96.1 8.12 25.5 1.38 NS 0.008 U NA 0.656 0.678	13 1.5 346.1 7.79 94.4 8.26 25.1 2.5 NS 0.008 U NS 0.658 0.67	NM 1.5 318.4 7.05 99.3 8.52 32.4 10.1 NS 0.008 U NS 0.618 0.629	NM 1 300.8 7.52 90 8.28 24.1 2.36 3.5 0.008 U NS 0.652 0.672
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN) Total nitrogen Nitrite/Nitrate	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L mg/L	3.78 3 405 7.32 91.1 8.46 26.55 7.98 NS U 0.24 0.736 0.744 0.008 I	4 3 341 6.22 82.8 8.14 30.3 10.03 NS 0.151 0.32 0.88 0.88 U	3.52 3 369 6.82 7.68 24.1 3.15 NS U 0.90 1.04 1.05 0.012 I	2.98 2.5 313.1 6.58 67.9 7.77 16.9 21.38 NS 0.097 1.29 2.9 2.9 2.9 U	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6 3.93 NS 0.008 U 0.37 0.462 0.472 0.010 I	08/02/17 4.6 3 384.1 5.59 74 8.1 30 4.15 NS 0.008 U 0.35 0.715 0.715 0.004 U	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3 2.84 NS 0.028 I 0.63 0.731 0.731 0.004 U	3.2 NS NS NS NS NS NS NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6 26.26 NS 0.015 I 0.30 0.757 0.763 0.006 I	5.87 3 322.4 6.32 70.6 8.08 20.8 7.1 NS 0.008 U 0.66 0.722 0.727 0.006 I	3.5 391.3 5.7 71.2 8.22 26.7 2.17 NS 0.008 U 0.36 0.683 0.683 0.006 U	12.5 340.8 5.63 72.4 8.16 28.3 4.85 5.8 0.008 U 0.36 0.612 0.612 0.006 U	17.6 3 362 8.44 99.2 8.5 23.28 1.48 8 0.008 U 0.28 0.414 0.414 0.006 U	15.5 3 688 6.49 85.7 8.51 29.4 2.83 7.2 0.008 U 0.19 0.49 0.49 0.006 U	10.5 1.5 290 6.66 83.4 8.63 29.3 2.13 7 0.009 I NS 0.05 U 0.05 U 0.006 U	14.4 3 295 7.43 90.4 8.74 25.2 1.75 7.5 7.5 0.008 U NS 0.559 0.559 0.006 U	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07 2.19 6.4 0.012 I NS 0.448 0.448 0.448 0.006 U	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6 1.79 NS 0.008 U NS 0.496 0.496 0.006 U	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6 2.79 7 0.008 U NS 0.782 0.782 0.006 U	5.5 1.5 294 7.52 99.8 8.76 31.4 2.89 NS 0.008 U NS 0.539 0.539 0.006 U	19 1.5 324 7.88 96.1 8.12 25.5 1.38 NS 0.008 U NA 0.656 0.678 0.022 I	13 1.5 346.1 7.79 94.4 8.26 25.1 2.5 NS 0.008 U NS 0.658 0.67 0.012 I	NM 1.5 318.4 7.05 99.3 8.52 32.4 10.1 NS 0.008 U NS 0.618 0.629 0.011 I	NM 1 300.8 7.52 90 8.28 24.1 2.36 3.5 0.008 U NS 0.652 0.672 0.020 I
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N Total kjeldahl nitrogen (TKN) Total nitrogen Nitrite/Nitrate Ortho phosphorus (Field Filtered)	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L mg/L mg/L	3.78 3 405 7.32 91.1 8.46 26.55 7.98 NS U 0.24 0.736 0.744 0.008 I 0.088	4 3 341 6.22 82.8 82.8 8.14 30.3 10.03 NS 0.151 0.32 0.88 0.88 U 0.064	3.52 3 369 6.82 81.2 7.68 24.1 3.15 NS U 0.90 1.04 1.05 0.012 I 0.029	2.98 2.5 313.1 6.58 67.9 7.77 16.9 21.38 NS 0.097 1.29 2.9 2.9 2.9 U 0.012	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6 3.93 NS 0.008 U 0.37 0.462 0.472 0.010 I 0.029	08/02/17 4.6 3 384.1 5.59 74 8.1 30 4.15 NS 0.008 U 0.35 0.715 0.004 U 0.226	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3 2.84 NS 0.028 I 0.63 0.731 0.731 0.004 U 0.272	3.2 NS NS NS NS NS NS NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6 26.26 NS 0.015 I 0.30 0.757 0.763 0.006 I 0.02	5.87 3 322.4 6.32 70.6 8.08 20.8 7.1 NS 0.008 U 0.66 0.722 0.727 0.006 I 0.022	3.5 391.3 5.7 71.2 8.22 26.7 2.17 NS 0.008 U 0.36 0.683 0.683 0.006 U 0.027	12.5 340.8 5.63 72.4 8.16 28.3 4.85 5.8 0.008 U 0.36 0.612 0.0612 0.006 U 0.063	17.6 3 362 8.44 99.2 8.5 23.28 1.48 8 0.008 U 0.28 0.414 0.414 0.006 U 0.032	15.5 3 688 6.49 85.7 8.51 29.4 2.83 7.2 0.008 U 0.19 0.49 0.49 0.006 U 0.059	10.5 1.5 290 6.66 83.4 8.63 29.3 2.13 7 0.009 I NS 0.05 U 0.05 U 0.05 U 0.006 U 0.0155	14.4 3 295 7.43 90.4 8.74 25.2 1.75 7.5 0.008 U NS 0.559 0.559 0.559 0.006 U 0.026	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07 2.19 6.4 0.012 I NS 0.448 0.448 0.448 0.448 0.006 U 0.002 I	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6 1.79 NS 0.008 U NS 0.496 0.496 0.496 0.006 U 0.014	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6 2.79 7 0.008 U NS 0.782 0.782 0.782 0.782 0.006 U 0.01	5.5 1.5 294 7.52 99.8 8.76 31.4 2.89 NS 0.008 U NS 0.539 0.539 0.006 U 0.014	19 1.5 324 7.88 96.1 8.12 25.5 1.38 NS 0.008 U NA 0.656 0.678 0.022 I 0.002 U	13 1.5 346.1 7.79 94.4 8.26 25.1 2.5 NS 0.008 U NS 0.658 0.67 0.012 I 0.015	NM 1.5 318.4 7.05 99.3 8.52 32.4 10.1 NS 0.008 U NS 0.618 0.629 0.011 I 0.023	NM 1 300.8 7.52 90 8.28 24.1 2.36 3.5 0.008 U NS 0.652 0.672 0.020 I 0.025
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN) Total nitrogen Nitrite/Nitrate Ortho phosphorus (Field Filtered) Total phosphorus	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L mg/L mg/L mg/L	3.78 3 405 7.32 91.1 8.46 26.55 7.98 NS U 0.24 0.736 0.744 0.008 I 0.088 0.092	4 3 341 6.22 82.8 8.14 30.3 10.03 NS 0.151 0.32 0.88 0.88 U 0.064 0.098	3.52 3 369 6.82 81.2 7.68 24.1 3.15 NS U 0.90 1.04 1.05 0.012 I 0.029 0.031 I	2.98 2.5 313.1 6.58 67.9 7.77 16.9 21.38 NS 0.097 1.29 2.9 2.9 U 0.012 0.168	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6 3.93 NS 0.008 U 0.37 0.462 0.472 0.010 I 0.029 0.054	08/02/17 4.6 3 384.1 5.59 74 8.1 30 4.15 NS 0.008 U 0.35 0.715 0.004 U 0.226 1.08	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3 2.84 NS 0.028 I 0.63 0.731 0.731 0.004 U 0.272 0.501	3.2 NS NS NS NS NS NS NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6 26.26 NS 0.015 I 0.30 0.757 0.763 0.006 I 0.02 0.013 I	5.87 3 322.4 6.32 70.6 8.08 20.8 7.1 NS 0.008 U 0.66 0.722 0.727 0.006 I 0.022 0.033	3.5 3 391.3 5.7 71.2 8.22 26.7 2.17 NS 0.008 U 0.36 0.683 0.683 0.006 U 0.027 0.029 I	12.5 3 340.8 5.63 72.4 8.16 28.3 4.85 5.8 0.008 U 0.36 0.612 0.6612 0.006 U 0.063 0.067	17.6 3 362 8.44 99.2 8.5 23.28 1.48 8 0.008 U 0.28 0.414 0.414 0.414 0.006 U 0.032 0.035	15.5 3 688 6.49 85.7 8.51 29.4 2.83 7.2 0.008 U 0.19 0.49 0.49 0.069 0.064	10.5 1.5 290 6.66 83.4 8.63 29.3 2.13 7 0.009 I NS 0.05 U 0.05 U 0.005 U 0.005 U 0.006 U 0.0155 0.016 I	14.4 3 295 7.43 90.4 8.74 25.2 1.75 7.5 0.008 U NS 0.559 0.055 0.006 U 0.026 0.055	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07 2.19 6.4 0.012 I NS 0.448 0.048 0.0448 0.006 U 0.002 I 0.023 I	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6 1.79 NS 0.008 U NS 0.496 0.496 0.496 0.496 0.006 U 0.014 0.038	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6 2.79 7 0.008 U NS 0.782 0.782 0.782 0.006 U 0.01 0.020 I	5.5 1.5 294 7.52 99.8 8.76 31.4 2.89 NS 0.008 U NS 0.539 0.539 0.006 U 0.014 0.015 I	19 1.5 324 7.88 96.1 8.12 25.5 1.38 NS 0.008 U NA 0.656 0.678 0.022 I 0.002 U 0.008 U	13 1.5 346.1 7.79 94.4 8.26 25.1 2.5 NS 0.008 U NS 0.658 0.67 0.012 I 0.015 0.023 I	NM 1.5 318.4 7.05 99.3 8.52 3.2.4 10.1 NS 0.008 U NS 0.618 0.629 0.011 I 0.023 0.029 I	NM 1 300.8 7.52 90 8.28 24.1 2.36 3.5 0.008 U NS 0.652 0.652 0.672 0.020 I 0.025 0.031 I
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN) Total nitrogen Nitrite/Nitrate Ortho phosphorus (Field Filtered) Total phosphorus	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	3.78 3 405 7.32 91.1 8.46 26.55 7.98 NS U 0.24 0.736 0.744 0.0081 0.088 0.092 5.99	4 3 341 6.22 82.8 8.14 30.3 10.03 NS 0.151 0.32 0.88 0.88 0.88 0.064 0.098 7.05	3.52 3 369 6.82 81.2 7.68 24.1 3.15 NS U 0.90 1.04 1.05 0.012 I 0.029 0.031 I 7.57	2.98 2.5 313.1 6.58 67.9 7.77 16.9 21.38 NS 0.097 1.29 2.9 2.9 2.9 U 0.012 0.168 64.5	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6 3.93 NS 0.008 U 0.37 0.462 0.472 0.472 0.010 I 0.029 0.054 5.44	08/02/17 4.6 3 384.1 5.59 74 8.1 30 4.15 NS 0.008 U 0.35 0.715 0.715 0.004 U 0.226 1.08 9.14	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3 2.84 NS 0.028 I 0.63 0.731 0.731 0.074 U 0.272 0.501 3.94	3.2 NS NS NS NS NS NS NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6 26.26 NS 0.015 I 0.30 0.757 0.763 0.006 I 0.02 0.013 I 10.8	5.87 3 322.4 6.32 70.6 8.08 20.8 7.1 NS 0.008 U 0.66 0.722 0.727 0.006 I 0.022 0.033 7.61	3.5 3 391.3 5.7 71.2 8.22 26.7 2.17 NS 0.008 U 0.36 0.683 0.068 0.683 0.006 U 0.027 0.029 I 5.38	12.5 3 340.8 5.63 72.4 8.16 28.3 4.85 5.8 0.008 U 0.36 0.612 0.0612 0.062 0.063 0.067 8.86	17.6 3 362 8.44 99.2 8.5 23.28 1.48 8 0.008 U 0.28 0.414 0.006 U 0.032 0.035 3.18	15.5 3 688 6.49 85.7 8.51 29.4 2.83 7.2 0.008 U 0.19 0.49 0.006 U 0.059 0.064 4.95	10.5 1.5 290 6.66 83.4 8.63 29.3 2.13 7 0.009 I NS 0.05 U 0.005 U 0.005 U 0.006 U 0.0155 0.016 I 4.8	14.4 3 295 7.43 90.4 8.74 25.2 1.75 7.5 0.008 U NS 0.559 0.055 0.006 U 0.026 0.055 2.48	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07 2.19 6.4 0.012 I NS 0.448 0.0448 0.006 U 0.002 I 0.023 I 7.62	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6 1.79 NS 0.008 U NS 0.496 0.496 0.496 0.006 U 0.014 0.038 6.69	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6 2.79 7 0.008 U NS 0.782 0.782 0.006 U 0.01 0.020 I 4.19	5.5 1.5 294 7.52 99.8 8.76 31.4 2.89 NS 0.008 U NS 0.539 0.006 U 0.014 0.015 I 8.55	19 1.5 324 7.88 96.1 8.12 25.5 1.38 NS 0.008 U NA 0.656 0.678 0.022 I 0.002 U 0.008 U 8.09	13 1.5 346.1 7.79 94.4 8.26 25.1 2.5 NS 0.008 U NS 0.678 0.012 I 0.015 0.023 I 5.68	NM 1.5 318.4 7.05 99.3 8.52 32.4 10.1 NS 0.008 U NS 0.618 0.629 0.011 I 0.023 0.029 I 7.62	NM 1 300.8 7.52 90 8.28 24.1 2.36 3.5 0.008 U NS 0.652 0.672 0.025 0.025 0.0311 5.67
Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN) Total nitrogen Nitrite/Nitrate Ortho phosphorus (Field Filtered) Total phosphorus	Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L mg/L mg/L mg/L	3.78 3 405 7.32 91.1 8.46 26.55 7.98 NS U 0.24 0.736 0.744 0.008 I 0.088 0.092	4 3 341 6.22 82.8 8.14 30.3 10.03 NS 0.151 0.32 0.88 0.88 U 0.064 0.098	3.52 3 369 6.82 81.2 7.68 24.1 3.15 NS U 0.90 1.04 1.05 0.012 I 0.029 0.031 I	2.98 2.5 313.1 6.58 67.9 7.77 16.9 21.38 NS 0.097 1.29 2.9 2.9 U 0.012 0.168	05/04/17 2 1.5 406 8.46 109.3 8.12 28.6 3.93 NS 0.008 U 0.37 0.462 0.472 0.010 I 0.029 0.054	08/02/17 4.6 3 384.1 5.59 74 8.1 30 4.15 NS 0.008 U 0.35 0.715 0.004 U 0.226 1.08	12/06/17 6.94 3 338.6 5.87 68.8 8 23.3 2.84 NS 0.028 I 0.63 0.731 0.731 0.004 U 0.272 0.501	3.2 NS NS NS NS NS NS NS NS NS NS NS NS NS	3.6 3 354.5 7.39 98.8 8.18 30.6 26.26 NS 0.015 I 0.30 0.757 0.763 0.006 I 0.02 0.013 I	5.87 3 322.4 6.32 70.6 8.08 20.8 7.1 NS 0.008 U 0.66 0.722 0.727 0.006 I 0.022 0.033	3.5 3 391.3 5.7 71.2 8.22 26.7 2.17 NS 0.008 U 0.36 0.683 0.683 0.006 U 0.027 0.029 I	12.5 3 340.8 5.63 72.4 8.16 28.3 4.85 5.8 0.008 U 0.36 0.612 0.6612 0.006 U 0.063 0.067	17.6 3 362 8.44 99.2 8.5 23.28 1.48 8 0.008 U 0.28 0.414 0.414 0.414 0.006 U 0.032 0.035	15.5 3 688 6.49 85.7 8.51 29.4 2.83 7.2 0.008 U 0.19 0.49 0.49 0.069 0.064	10.5 1.5 290 6.66 83.4 8.63 29.3 2.13 7 0.009 I NS 0.05 U 0.05 U 0.005 U 0.005 U 0.006 U 0.0155 0.016 I	14.4 3 295 7.43 90.4 8.74 25.2 1.75 7.5 0.008 U NS 0.559 0.055 0.006 U 0.026 0.055	08/05/21 12.3 3 365 6.82 90.3 7.59 30.07 2.19 6.4 0.012 I NS 0.448 0.048 0.0448 0.006 U 0.002 I 0.023 I	10/26/21 10.5 3 305 8.25 85.4 8.25 27.6 1.79 NS 0.008 U NS 0.496 0.496 0.496 0.496 0.006 U 0.014 0.038	02/17/22 14 1.5 319 8.4 90.8 8.48 19.6 2.79 7 0.008 U NS 0.782 0.782 0.782 0.006 U 0.01 0.020 I	5.5 1.5 294 7.52 99.8 8.76 31.4 2.89 NS 0.008 U NS 0.539 0.539 0.006 U 0.014 0.015 I	19 1.5 324 7.88 96.1 8.12 25.5 1.38 NS 0.008 U NA 0.656 0.678 0.022 I 0.002 U 0.008 U	13 1.5 346.1 7.79 94.4 8.26 25.1 2.5 NS 0.008 U NS 0.658 0.67 0.012 I 0.015 0.023 I	NM 1.5 318.4 7.05 99.3 8.52 3.2.4 10.1 NS 0.008 U NS 0.618 0.629 0.011 I 0.023 0.029 I	NM 1 300.8 7.52 90 8.28 24.1 2.36 3.5 0.008 U NS 0.652 0.652 0.020 I 0.025 0.031 I

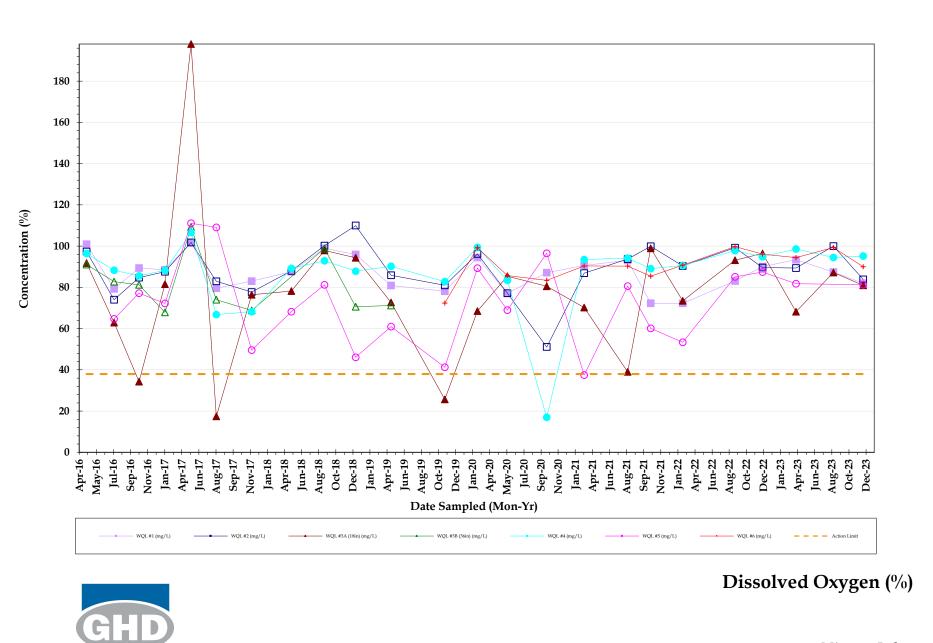
Table 1

Analytical Results Summary Surface Water Quality Monitoring Miromar Lakes, Fort Myers, Florida November 2023

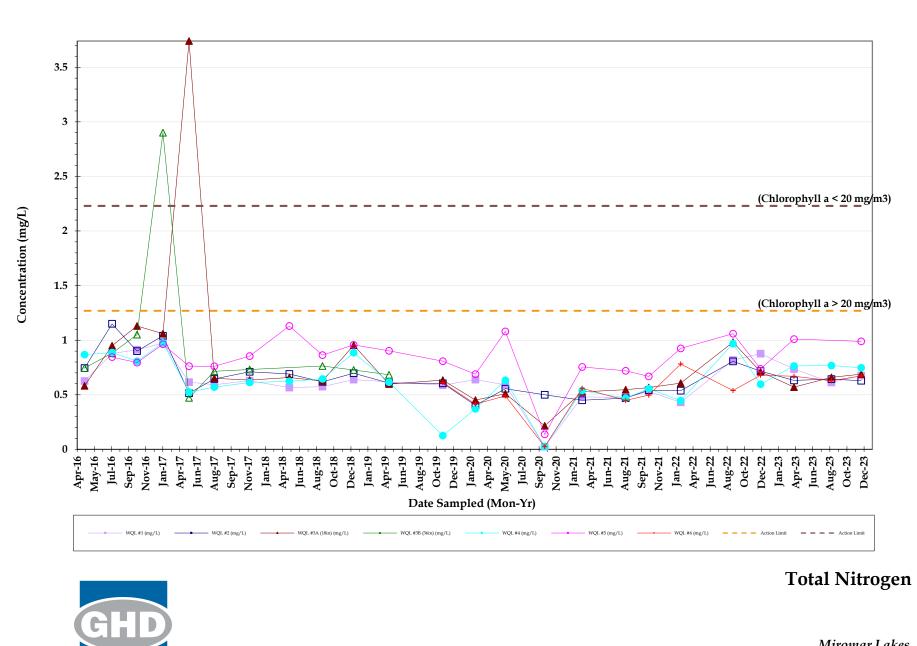

Sample Location/Sample ID:				_								14	IO Locatio	n #4 / WQL	4										
Sample Date:		04/27/16	08/03/16	10/31/16	01/31/17	05/04/17	08/02/17	12/06/17	04/26/18	08/22/18	12/11/18			02/17/20		10/21/20	03/03/21	08/05/21	10/26/21	02/17/22	08/22/22	11/28/22	02/27/22	08/07/23	11/21/22
Field Parameters	Units	04/27/10	00/03/10	10/31/10	01/31/17	03/04/17	00/02/17	12/00/17	04/20/10	00/22/10	12/11/10	04/10/13	10/24/15	02/17/20	00/03/20	10/21/20	03/03/21	00/03/21	10/20/21	02/11/22	00/22/22	11/20/22	03/21/23	00/07/23	11/21/23
Total Water Depth	Feet	12	7.77	14.88	7.91	5	10.7	7.9	6.9	11.8	10.7	14.2	15.4	13.55	12.55	13	8.01	7.2	7	5.5	6	NS	12	NM	NM
Sample Depth	Feet	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	NM	1.5	1.5	1.5	1.5	1.5
Conductivity, field	umhos/cm	403	340	373	361.8	405	404.8	342	399.7	342	310.3	382.1	337	363	682	286	291	349	302	318	293	317	342.1	312.1	298
Dissolved oxygen (DO), field	mg/L	7.72	6.55	7.14	8.06	8.33	5.02	5.73	7.13	6.96	7.84	7.28	6.42	8.45	6.42	1.41	7.75	7.31	6.69	8.22	7.06	7.96	8.19	6.91	7.94
Dissolved oxygen (DO), field	//////////////////////////////////////	96.4	88.3	85.6	88.3	106.6	66.8	68.2	89.2	92.9	87.8	90.2	82.8	99.4	83.4	17	93.5	94.2	89.1	90.6	97.8	94.8	98.6	94.5	95.2
pH. field	s.u.	8.58	8.31	7.59	8.1	7.65	8.16	8.08	8.39	8.34	7.99	7.97	8.38	8.58	8.57	8.66	8.8	6.62	8.21	8.26	8.76	7.94	8.42	8.55	8.39
Temperature, field	Dea C	26.71	31.1	24.5	19.8	28.1	30.3	24.1	26.8	30.5	20.9	26.3	28.5	23.49	29.9	27.5	24.8	29.95	27.6	19.7	31.9	24	24.2	32.2	24.4
Turbidity, field	NTU	1.87	2.04	4.44	3.02	3.11	1.81	2.48	3.38	3.56	4.1	2.72	2.58	1.04	2.48	1.85	2.28	1.76	3.19	3.14	2.07	0.98	3.95	12.1	1.3
Secchi Disk	Depth	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.5	8.5	7	6.5	8.01	7.2	NS	5.5	NS	NS	NS	NS	4
Wet Parameters	Units	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	0.0	0.5	1	0.5	0.01	1.2	INO.	0.0	NO	NO	NO	NO	-
Ammonia-N	mg/L	U	0.023 I		0.012	0.008 U	0.008 U	0.026	0.008 U	0.014	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U	0.025	0.008 U	0.008 U	0.071	0.008 U	0.008 U	0.008 U	0.008 U
TAN criteria calculation	mg/L	0.20	0.0231	0.96	0.68	0.000 0	0.000 0	0.0201	0.000 0	0.23	0.008 0	0.008 0	0.008 0	0.000 0	0.008.0	0.008 U NS	0.008 0 NS	NS	0.008 0 NS	0.008 U NS	NS	0.008 U NA	0.000 U NS	0.008 0 NS	0.008 0 NS
Total kjeldahl nitrogen (TKN)	mg/L	0.20	0.23	0.90	0.08	0.72	0.57	0.612	0.27	0.23	0.74	0.54	0.25	0.24	0.633	0.05 U	0.538	0.469	0.555	0.43	0.784	0.579	0.743	0.752	0.728
Total nitrogen	mg/L	0.868	0.887	0.808	0.976	0.524	0.57	0.612	0.623	0.645	0.885	0.615	0.1201	0.371	0.633	0.05 U	0.538	0.469	0.555	0.446	0.969	0.596	0.764	0.768	0.748
Nitrite/Nitrate	mg/L	U.000	U.007	0.028	U.570	0.006	0.004 U	0.0012 0.004 U	0.013	0.0040	0.000 U	0.006 U	0.006 U	0.006 U	0.005 0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.016 I	0.303	0.030 0.017 I	0.021 I	0.016 I	0.020 1
Ortho phosphorus (Field Filtered)	mg/L	0.094	0.017	0.020	0.017	0.0001	0.004 0	0.004 0	0.0131	0.0031	0.000 0	0.000 0	0.000 0	0.000 0	0.000 0	0.000 0	0.000 0	0.000 0	0.000 0	0.01	0.105	0.002 I	0.0211	0.0101	0.0201
Total phosphorus	mg/L	0.034	0.021 I	0.024	0.038	0.03	0.044	0.027	0.030 I	0.044	0.022	0.020	0.003	0.064	0.042	0.010 0.014 I	0.021	0.032	0.010	0.020 1	0.017 I	0.002 1	0.02	0.025	0.031 I
Chlorophyll	mg/L	4.92	7.11	7.78	9.09	3.94	9.31	4.62	8.66	10.5	8.43	3.43	7.38	2.75	3.78	5.05	1.74	5.39	7.27	3.82	14.2	6.85	5.24	7.8	4.91
Total suspended solids (TSS)	mg/L	2.33	2.84	3.6	5.2	3.26	2.6	1.60 I	2.00 1	5.5	2.33	3.43	3.2	1.25 I	3.4	1.80 I	0.570 U	3.6	2.00 1	1.25 I	0.570 U	5.4	2.55	3.8	2.4
	•	2.55	-	3.0	-							-	-	1.231	1 U	1.50 1	1 U	1 U		1.231		1 U		1 U	
				1 11																					
Biochemical oxygen demand (total BOD5)	mg/L	U	U	U	1.09 I	1 U	1 U	1 U	1.16 I	1.47 I	1 U	1 U	1.07 I	10	10	1.511	10	10	1 U	10	1.0 U	10	1 U	10	1 U
Sample Location/Sample ID:	mg/L	0		U		-	-					W		n #5 / WQL	-	1.511		-	_	-			-		
Sample Location/Sample ID: Sample Date:		04/27/16	08/03/16	U 10/31/16	01/31/17	05/04/17	1 U 08/02/17	12/06/17		1.471 08/22/18				n #5 / WQL	-	10/21/20	03/03/21	08/05/21	10/26/21	02/17/22		11/28/22	-		
Sample Location/Sample ID: Sample Date: Field Parameters	Units	04/27/16	08/03/16	10/31/16	01/31/17	05/04/17	08/02/17	12/06/17	04/26/18	08/22/18	12/11/18	W 04/16/19	/Q Locatio 10/24/19	n #5 / WQL 02/17/20	.5 06/03/20	10/21/20	03/03/21	08/05/21	_	-	08/22/22	11/28/22	03/27/23	08/07/23	11/21/23
Sample Location/Sample ID: Sample Date:		04/27/16 NS				-	-					W	/Q Locatio	n #5 / WQL	.5		03/03/21 2.5	-	_	-			-		11/21/23 2.5
Sample Location/Sample ID: Sample Date: Field Parameters	Units	04/27/16 NS NS	08/03/16 2 1.5	10/31/16 2.03 1.5	01/31/17 1.42 0.5	05/04/17 2.5 1.5	08/02/17 4.32 1.5	12/06/17 2.84 1.5	04/26/18 S S	08/22/18 2.7 1.5	12/11/18 1.1 0.5	W 04/16/19 1.5 0.75	/Q Locatio 10/24/19 1.98 1	n #5 / WQL 02/17/20 1.72 1	.5 06/03/20 <1 <1	10/21/20 2 1.5	03/03/21 2.5 1.5	08/05/21 NM 1.5	10/26/21 4 1.5	02/17/22 2 0.5	08/22/22 2.5 1.5	11/28/22 NS 1.5	03/27/23 NM 1.5	08/07/23 NS NS	11/21/23 2.5 1.5
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth	Units Feet	04/27/16 NS NS NS	08/03/16 2 1.5 411	10/31/16 2.03 1.5 515	01/31/17 1.42 0.5 462	05/04/17 2.5 1.5 464	08/02/17 4.32 1.5 478.4	12/06/17 2.84 1.5 447.9	04/26/18 S S 464.1	08/22/18 2.7 1.5 405.1	12/11/18 1.1 0.5 427.2	04/16/19 1.5	/Q Locatio 10/24/19 1.98 1 465	n #5 / WQL 02/17/20 1.72 1 480	.5 06/03/20 <1 <1 802	10/21/20 2 1.5 373	03/03/21 2.5 1.5 409	08/05/21 NM 1.5 82.9	10/26/21 4 1.5 423	02/17/22 2 0.5 438	08/22/22 2.5 1.5 397.6	11/28/22 NS 1.5 429	03/27/23 NM 1.5 475.8	08/07/23 NS NS NS	11/21/23 2.5 1.5 390.8
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth	Units Feet Feet	04/27/16 NS NS NS NS	08/03/16 2 1.5 411 4.84	10/31/16 2.03 1.5 515 6.22	01/31/17 1.42 0.5 462 6.88	05/04/17 2.5 1.5	08/02/17 4.32 1.5 478.4 8.03	12/06/17 2.84 1.5	04/26/18 S 464.1 5.47	08/22/18 2.7 1.5	12/11/18 1.1 0.5	W 04/16/19 1.5 0.75	/Q Locatio 10/24/19 1.98 1	n #5 / WQL 02/17/20 1.72 1 480 7.6	.5 06/03/20 <1 <1	10/21/20 2 1.5	03/03/21 2.5 1.5	08/05/21 NM 1.5 82.9 6.07	10/26/21 4 1.5	02/17/22 2 0.5 438 8.4	08/22/22 2.5 1.5	11/28/22 NS 1.5 429 7.13	03/27/23 NM 1.5	08/07/23 NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field	Units Feet Feet umhos/cm	04/27/16 NS NS NS	08/03/16 2 1.5 411 4.84 64.7	10/31/16 2.03 1.5 515	01/31/17 1.42 0.5 462 6.88 72.2	05/04/17 2.5 1.5 464	08/02/17 4.32 1.5 478.4 8.03 109.1	12/06/17 2.84 1.5 447.9 4.21 49.6	04/26/18 S 464.1 5.47 68.2	08/22/18 2.7 1.5 405.1	12/11/18 1.1 0.5 427.2 4.21 46.1	W 04/16/19 1.5 0.75 475.8	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3	n #5 / WQL 02/17/20 1.72 1 480	5 06/03/20 <1 <1 802 5.18 69	10/21/20 2 1.5 373	03/03/21 2.5 1.5 409 3.05 37.5	08/05/21 NM 1.5 82.9 6.07 80.6	10/26/21 4 1.5 423	02/17/22 2 0.5 438 8.4 53.4	08/22/22 2.5 1.5 397.6	11/28/22 NS 1.5 429 7.13 87.4	03/27/23 NM 1.5 475.8	08/07/23 NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field	Units Feet Feet umhos/cm mg/L	04/27/16 NS NS NS NS	08/03/16 2 1.5 411 4.84	10/31/16 2.03 1.5 515 6.22 77.2 7.77	01/31/17 1.42 0.5 462 6.88	05/04/17 2.5 1.5 464 8.5 111.1 7.77	08/02/17 4.32 1.5 478.4 8.03	12/06/17 2.84 1.5 447.9 4.21	04/26/18 S 464.1 5.47 68.2 7.61	08/22/18 2.7 1.5 405.1 6.09	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38	W 04/16/19 1.5 0.75 475.8 5 61 6.44	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35	5 06/03/20 <1 <1 802 5.18 69 8.28	10/21/20 2 1.5 373 7.65 96.5 8.18	03/03/21 2.5 1.5 409 3.05 37.5 8.04	08/05/21 NM 1.5 82.9 6.07 80.6 8.12	10/26/21 4 1.5 423 4.69	02/17/22 2 0.5 438 8.4 53.4 8.15	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41	11/28/22 NS 1.5 429 7.13 87.4 8.4	03/27/23 NM 1.5 475.8 6.56 81.8 8.17	08/07/23 NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field	Units Feet Feet umhos/cm mg/L %	04/27/16 NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7	10/31/16 2.03 1.5 515 6.22 77.2	01/31/17 1.42 0.5 462 6.88 72.2	05/04/17 2.5 1.5 464 8.5 111.1	08/02/17 4.32 1.5 478.4 8.03 109.1	12/06/17 2.84 1.5 447.9 4.21 49.6	04/26/18 S 464.1 5.47 68.2	08/22/18 2.7 1.5 405.1 6.09 81.2	12/11/18 1.1 0.5 427.2 4.21 46.1	W 04/16/19 1.5 0.75 475.8 5 61	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3	5 06/03/20 <1 <1 802 5.18 69	10/21/20 2 1.5 373 7.65 96.5	03/03/21 2.5 1.5 409 3.05 37.5	08/05/21 NM 1.5 82.9 6.07 80.6	10/26/21 4 1.5 423 4.69 60.1	02/17/22 2 0.5 438 8.4 53.4	08/22/22 2.5 1.5 397.6 6.31 85.1	11/28/22 NS 1.5 429 7.13 87.4	03/27/23 NM 1.5 475.8 6.56 81.8	08/07/23 NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field	Units Feet Feet umhos/cm mg/L % s.u.	04/27/16 NS NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6 2.08	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4 3.62	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7 3.6	05/04/17 2.5 1.5 464 8.5 111.1 7.77	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5 4.65	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6 1.99	04/26/18 S S 464.1 5.47 68.2 7.61 26.6 4.93	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4 3.4	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8 4.18	W 04/16/19 1.5 0.75 475.8 5 61 6.44	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42 2.45	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3 5.74	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4 2.96	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3 2.27	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19 4.05	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9 17.12	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6 2.1	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2 2.3	11/28/22 NS 1.5 429 7.13 87.4 8.4 25.7 1.22	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3 2.88	08/07/23 NS NS NS NS NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5 6.24
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field	Units Feet Feet umhos/cm mg/L % s.u. Deg C	04/27/16 NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7	05/04/17 2.5 1.5 464 8.5 111.1 7.77 29.3	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6	04/26/18 S 464.1 5.47 68.2 7.61 26.6	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8	W 04/16/19 1.5 0.75 475.8 5 61 6.44 25.4	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99 28.4	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2	11/28/22 NS 1.5 429 7.13 87.4 8.4 25.7	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3	08/07/23 NS NS NS NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field	Units Feet Feet umhos/cm mg/L % s.u. Deg C NTU	04/27/16 NS NS NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6 2.08 NS	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4 3.62 NS	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7 3.6 NS	05/04/17 2.5 1.5 464 8.5 111.1 7.77 29.3 5.77 NS	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5 4.65 NS	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6 1.99 NS	04/26/18 S 464.1 5.47 68.2 7.61 26.6 4.93 NS	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4 3.4 NS	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8 4.18 NS	W 04/16/19 1.5 0.75 475.8 5 61 6.44 25.4 4.98 NS	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99 28.4 4.71 Bottom	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42 2.45 Bottom	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3 5.74 Bottom	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4 2.96 NS	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3 2.27 NS	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19 4.05 NS	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9 17.12 NS	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6 2.1 NS	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2 2.3 NS	11/28/22 NS 1.5 429 7.13 87.4 87.4 8.4 25.7 1.22 NS	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3 2.88 NS	08/07/23 NS NS NS NS NS NS NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5 6.24 NM
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk	Units Feet Feet umhos/cm % s.u. Deg C NTU Depth	04/27/16 NS NS NS NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6 2.08	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4 3.62	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7 3.6	05/04/17 2.5 1.5 464 8.5 111.1 7.77 29.3 5.77	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5 4.65	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6 1.99	04/26/18 S 464.1 5.47 68.2 7.61 26.6 4.93 NS 0.008 U	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4 3.4	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8 4.18	W 04/16/19 1.5 0.75 475.8 5 61 6.44 25.4 4.98	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99 28.4 4.71	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42 2.45	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3 5.74	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4 2.96	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3 2.27	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19 4.05 NS 0.008 U	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9 17.12	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6 2.1	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2 2.3	11/28/22 NS 1.5 429 7.13 87.4 8.4 25.7 1.22	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3 2.88	08/07/23 NS NS NS NS NS NS NS NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5 6.24 NM 0.008 U
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters	Units Feet Feet umhos/cm % s.u. Deg C NTU Depth Units	04/27/16 NS NS NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6 2.08 NS	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4 3.62 NS	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7 3.6 NS 0.008 I 1.40	05/04/17 2.5 1.5 464 8.5 111.1 7.77 29.3 5.77 NS	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5 4.65 NS	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6 1.99 NS	04/26/18 S 464.1 5.47 68.2 7.61 26.6 4.93 NS	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4 3.4 NS	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8 4.18 NS	W 04/16/19 1.5 0.75 475.8 5 61 6.44 25.4 4.98 NS	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99 28.4 4.71 Bottom	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42 2.45 Bottom	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3 5.74 Bottom	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4 2.96 NS	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3 2.27 NS	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19 4.05 NS	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9 17.12 NS	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6 2.1 NS	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2 2.3 NS	11/28/22 NS 1.5 429 7.13 87.4 87.4 8.4 25.7 1.22 NS	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3 2.88 NS	08/07/23 NS NS NS NS NS NS NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5 6.24 NM 0.008 U NS
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Armonia-N	Units Feet Feet umhos/cm % s.u. Deg C NTU Depth Units mg/L	04/27/16 NS NS NS NS NS NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6 2.08 NS 0.033 0.49 0.845	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4 3.62 NS U	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7 3.6 NS 0.008 I 1.40 0.962	05/04/17 2.5 1.5 464 8.5 111.1 7.77 29.3 5.77 NS 0.008 U	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5 4.65 NS 0.008 U 0.32 0.756	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6 1.99 NS 0.034 1.03 0.838	04/26/18 S S 464.1 5.47 68.2 7.61 26.6 4.93 NS 0.008 U 0.82 1.11	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4 3.4 NS 0.010 I	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8 4.18 NS 0.008 U 2.19 0.944	W 04/16/19 1.5 0.75 475.8 5 61 6.44 25.4 4.98 NS 0.008 U	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99 28.4 4.71 Bottom 0.008 U 0.46 0.807	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42 2.45 Bottom 0.008 U 0.36 0.688	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3 5.74 Bottom 0.008 U 0.26 1.08	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4 2.96 NS 0.008 U NS 0.008 U NS 0.137 I	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3 2.27 NS 0.0231 NS 0.755	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19 4.05 NS 0.008 U	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9 17.12 NS 0.008 U	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6 2.1 NS 0.008 U NS 0.925	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2 2.3 NS 0.008 U NS 0.883	11/28/22 NS 1.5 429 7.13 87.4 8.4 25.7 1.22 NS 0.008 U NA 0.717	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3 2.88 NS 0.008 U	08/07/23 NS NS NS NS NS NS NS NS NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5 6.24 NM 0.008 U NS 0.97
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation	Units Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L	04/27/16 NS NS NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6 2.08 NS 0.033 0.49 0.845 0.845	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4 3.62 NS U U 0.70 0.786 0.794	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7 3.6 NS 0.008 I 1.40 0.962 0.962	05/04/17 2.5 1.5 464 8.5 111.1 7.77 29.3 5.77 NS 0.008 U 0.58 0.754 0.762	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5 4.65 NS 0.008 U 0.32 0.756 0.76	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6 1.99 NS 0.034 1.03 0.838 0.854	04/26/18 S S 464.1 5.47 68.2 7.61 26.6 4.93 NS 0.008 U 0.82 1.11 1.13	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4 3.4 NS 0.010 I 0.52 0.857 0.863	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8 4.18 NS 0.008 U 2.19 0.944 0.957	W 04/16/19 1.5 0.75 475.8 5 61 6.44 25.4 4.98 NS 0.008 U 1.51 0.902	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99 28.4 4.71 Bottom 0.008 U 0.46 0.807 0.807	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42 2.45 Bottom 0.008 U 0.36 0.688 0.688	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3 5.74 Bottom 0.008 U 0.26 1.08 1.08	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4 2.96 NS 0.008 U NS 0.008 U NS 0.137 I 0.137	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3 2.27 NS 0.0231 NS 0.755 0.755	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19 4.05 NS 0.008 U NS 0.008 U NS 0.72 0.72	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9 17.12 NS 0.008 U NS 0.668 0.668	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6 2.1 NS 0.008 U NS 0.008 U NS 0.925 0.925	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2 2.3 NS 0.008 U NS 0.883 1.06	11/28/22 NS 1.5 429 7.13 87.4 8.4 25.7 1.22 NS 0.008 U NA 0.717 0.737	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3 2.88 NS 0.008 U NS 0.008 U NS 0.982 1.01	08/07/23 NS NS NS NS NS NS NS NS NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5 6.24 NM 0.008 U NS 0.97 0.989
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN)	Units Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L	04/27/16 NS NS NS NS NS NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6 2.08 NS 0.033 0.49 0.845	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4 3.62 NS U 0.70 0.786	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7 3.6 NS 0.008 I 1.40 0.962	05/04/17 2.5 1.5 464 8.5 111.1 7.77 29.3 5.77 NS 0.008 U 0.58 0.754	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5 4.65 NS 0.008 U 0.32 0.756	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6 1.99 NS 0.034 1.03 0.838	04/26/18 S S 464.1 5.47 68.2 7.61 26.6 4.93 NS 0.008 U 0.82 1.11	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4 3.4 NS 0.010 I 0.52 0.857	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8 4.18 NS 0.008 U 2.19 0.944	W 04/16/19 1.5 0.75 475.8 5 61 6.44 25.4 4.98 NS 0.008 U 1.51 0.902	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99 28.4 4.71 Bottom 0.008 U 0.46 0.807	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42 2.45 Bottom 0.008 U 0.36 0.688	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3 5.74 Bottom 0.008 U 0.26 1.08	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4 2.96 NS 0.008 U NS 0.008 U NS 0.137 I	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3 2.27 NS 0.0231 NS 0.755	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19 4.05 NS 0.008 U NS 0.008 U NS 0.72	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9 17.12 NS 0.008 U NS 0.668	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6 2.1 NS 0.008 U NS 0.925	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2 2.3 NS 0.008 U NS 0.883	11/28/22 NS 1.5 429 7.13 87.4 8.4 25.7 1.22 NS 0.008 U NA 0.717	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3 2.88 NS 0.008 U NS 0.008 U NS 0.982	08/07/23 NS NS NS NS NS NS NS NS NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5 6.24 NM 0.008 U NS 0.97
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN)	Units Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L	04/27/16 NS NS NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6 2.08 NS 0.033 0.49 0.845 0.845	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4 3.62 NS U U 0.70 0.786 0.794	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7 3.6 NS 0.008 I 1.40 0.962 0.962 U 0.017	05/04/17 2.5 1.5 464 8.5 111.1 7.77 29.3 5.77 NS 0.008 U 0.58 0.754 0.762	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5 4.65 NS 0.008 U 0.32 0.756 0.76 0.004 I 0.019	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6 1.99 NS 0.034 1.03 0.838 0.854	04/26/18 S S 464.1 5.47 68.2 7.61 26.6 4.93 NS 0.008 U 0.82 1.11 1.13 0.016 0.016	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4 3.4 NS 0.010 I 0.52 0.857 0.863 0.006 I 0.015	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8 4.18 NS 0.008 U 2.19 0.944 0.957 0.013 I 0.019	W 04/16/19 1.5 0.75 475.8 5 61 6.44 25.4 4.98 NS 0.008 U 1.51 0.902	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99 28.4 4.71 Bottom 0.008 U 0.46 0.807 0.807	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42 2.45 Bottom 0.008 U 0.36 0.688 0.688	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3 5.74 Bottom 0.008 U 0.26 1.08 1.08	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4 2.96 NS 0.008 U NS 0.008 U NS 0.137 I 0.137 0.006 U 0.075	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3 2.27 NS 0.0231 NS 0.755 0.755	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19 4.05 NS 0.008 U NS 0.008 U NS 0.72 0.72	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9 17.12 NS 0.008 U NS 0.668 0.668	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6 2.1 NS 0.008 U NS 0.008 U NS 0.925 0.925 0.925 0.006 U 0.01	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2 2.3 NS 0.008 U NS 0.883 1.06	11/28/22 NS 1.5 429 7.13 87.4 8.4 25.7 1.22 NS 0.008 U NA 0.717 0.737 0.020 I 0.011	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3 2.88 NS 0.008 U NS 0.008 U NS 0.982 1.01	08/07/23 NS NS NS NS NS NS NS NS NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5 6.24 NM 0.008 U NS 0.008 U NS 0.97 0.989 0.019 I 0.018
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN) Total nitrogen Nitrite/Nitrate	Units Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L mg/L	04/27/16 NS NS NS NS NS NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6 2.08 NS 0.033 0.49 0.845 0.845 U	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4 3.62 NS U 0.70 0.786 0.794 0.008 I	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7 3.6 NS 0.008 I 1.40 0.962 0.962 U	05/04/17 2.5 1.5 464 8.5 111.1 7.77 29.3 5.77 NS 0.008 U 0.58 0.754 0.762 0.008 I	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5 4.65 NS 0.008 U 0.32 0.756 0.76 0.004 I	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6 1.99 NS 0.034 1.03 0.838 0.854 0.016	04/26/18 S S 464.1 5.47 68.2 7.61 26.6 4.93 NS 0.008 U 0.82 1.11 1.13 0.016	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4 3.4 NS 0.010 I 0.52 0.857 0.863 0.006 I	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8 4.18 NS 0.008 U 2.19 0.944 0.957 0.013 I	W 04/16/19 1.5 0.75 475.8 5 61 6.44 25.4 4.98 NS 0.008 U 1.51 0.902 0.006 U	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99 28.4 4.71 Bottom 0.008 U 0.46 0.807 0.807 0.006 U	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42 2.45 Bottom 0.008 U 0.36 0.688 0.688 0.688	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3 5.74 Bottom 0.008 U 0.26 1.08 1.08 0.006 U	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4 2.96 NS 0.008 U NS 0.008 U NS 0.137 I 0.137 0.006 U	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3 2.27 NS 0.023 I NS 0.755 0.755 0.755 0.006 U	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19 4.05 NS 0.008 U NS 0.008 U NS 0.72 0.72 0.72	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9 17.12 NS 0.008 U NS 0.668 0.668 0.006 U	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6 2.1 NS 0.008 U NS 0.008 U NS 0.925 0.925 0.006 U	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2 2.3 NS 0.008 U NS 0.883 1.06 0.177	11/28/22 NS 1.5 429 7.13 87.4 8.4 25.7 1.22 NS 0.008 U NA 0.717 0.737 0.020 I	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3 2.88 NS 0.008 U NS 0.008 U NS 0.982 1.01 0.029	08/07/23 NS NS NS NS NS NS NS NS NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5 6.24 NM 0.008 U NS 0.008 U NS 0.97 0.989 0.019 I
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N TAN criteria calculation Total kjeldahl nitrogen (TKN) Total nitrogen Nitrite/Nitrate Ortho phosphorus (Field Filtered)	Units Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L mg/L mg/L	04/27/16 NS NS NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6 2.08 NS 0.033 0.49 0.845 0.845 U 0.022	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4 3.62 NS U 0.70 0.786 0.794 0.008 I 0.042	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7 3.6 NS 0.008 I 1.40 0.962 0.962 U 0.017	05/04/17 2.5 1.5 464 8.5 111.1 7.77 29.3 5.77 NS 0.008 U 0.58 0.754 0.762 0.008 I 0.027	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5 4.65 NS 0.008 U 0.32 0.756 0.76 0.004 I 0.019	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6 1.99 NS 0.034 1.03 0.838 0.854 0.016 0.022	04/26/18 S S 464.1 5.47 68.2 7.61 26.6 4.93 NS 0.008 U 0.82 1.11 1.13 0.016 0.027 I 27.6	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4 3.4 NS 0.010 I 0.52 0.857 0.863 0.006 I 0.015	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8 4.18 NS 0.008 U 2.19 0.944 0.957 0.013 I 0.019	W 04/16/19 1.5 0.75 475.8 5 61 6.44 25.4 4.98 NS 0.008 U 1.51 0.902 0.006 U 0.023	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99 28.4 4.71 Bottom 0.008 U 0.46 0.807 0.006 U 0.05 0.081 15.7	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42 2.45 Bottom 0.008 U 0.008 U 0.36 0.688 0.688 0.688 0.006 U 0.038 0.049 12.6	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3 5.74 Bottom 0.008 U 0.26 1.08 1.08 1.08 0.006 U 0.055	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4 2.96 NS 0.008 U NS 0.008 U NS 0.137 I 0.006 U 0.075 0.084 22.7	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3 2.27 NS 0.023 I NS 0.755 0.755 0.755 0.006 U 0.029	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19 4.05 NS 0.008 U NS 0.008 U NS 0.72 0.72 0.72 0.006 U 0.014 0.035 22.9	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9 17.12 NS 0.008 U NS 0.668 0.668 0.668 0.006 U 0.008 0.027 I 16.5	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6 2.1 NS 0.008 U NS 0.925 0.925 0.925 0.925 0.006 U 0.01 0.034 5.08	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2 2.3 NS 0.008 U NS 0.883 1.06 0.177 0.016 0.024 I 21.7	11/28/22 NS 1.5 429 7.13 87.4 8.4 25.7 1.22 NS 0.008 U NA 0.717 0.737 0.020 I 0.011 0.017 I 10	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3 2.88 NS 0.008 U NS 0.008 U NS 0.982 1.01 0.029 0.026	08/07/23 NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5 6.24 NM 0.008 U NS 0.97 0.989 0.019 I 0.018 0.022 I 14.8
Sample Location/Sample ID: Sample Date: Field Parameters Total Water Depth Sample Depth Conductivity, field Dissolved oxygen (DO), field Dissolved oxygen (DO), field pH, field Temperature, field Turbidity, field Secchi Disk Wet Parameters Ammonia-N Total kjeldahl nitrogen (TKN) Total nitrogen Nitrite/Nitrate Ortho phosphorus (Field Filtered) Total phosphorus	Units Feet Feet umhos/cm mg/L % s.u. Deg C NTU Depth Units mg/L mg/L mg/L mg/L mg/L mg/L	04/27/16 NS NS NS NS NS NS NS NS NS NS	08/03/16 2 1.5 411 4.84 64.7 7.83 30.6 2.08 NS 0.033 0.49 0.845 0.845 U 0.022 0.065	10/31/16 2.03 1.5 515 6.22 77.2 7.77 26.4 3.62 NS U 0.70 0.786 0.794 0.008 I 0.042 0.042	01/31/17 1.42 0.5 462 6.88 72.2 7.65 17.7 3.6 NS 0.008 I 1.40 0.962 0.962 U 0.017 0.036	05/04/17 2.5 1.5 464 8.5 111.1 7.77 29.3 5.77 NS 0.008 U 0.58 0.754 0.762 0.008 I 0.027 0.035	08/02/17 4.32 1.5 478.4 8.03 109.1 8.1 31.5 4.65 NS 0.008 U 0.32 0.756 0.76 0.004 I 0.019 0.067	12/06/17 2.84 1.5 447.9 4.21 49.6 7.58 23.6 1.99 NS 0.034 1.03 0.838 0.838 0.854 0.016 0.022 0.046	04/26/18 S S 464.1 5.47 68.2 7.61 26.6 4.93 NS 0.008 U 0.82 1.11 1.13 0.016 0.027 I	08/22/18 2.7 1.5 405.1 6.09 81.2 7.8 30.4 3.4 NS 0.010 I 0.52 0.857 0.863 0.006 I 0.015 0.025 I	12/11/18 1.1 0.5 427.2 4.21 46.1 6.38 19.8 4.18 NS 0.008 U 2.19 0.957 0.013 I 0.019 0.024 I	W 04/16/19 1.5 0.75 475.8 5 61 6.44 25.4 4.98 NS 0.008 U 1.51 0.902 0.006 U 0.023 0.028 I	/Q Locatio 10/24/19 1.98 1 465 3.2 41.3 7.99 28.4 4.71 Bottom 0.008 U 0.46 0.807 0.807 0.807 0.006 U 0.05 0.081	n #5 / WQL 02/17/20 1.72 1 480 7.6 89.3 8.35 23.42 2.45 Bottom 0.008 U 0.36 0.688 0.688 0.006 U 0.038 0.049	5 06/03/20 <1 <1 802 5.18 69 8.28 30.3 5.74 Bottom 0.008 U 0.26 1.08 1.08 1.08 0.006 U 0.055 0.102	10/21/20 2 1.5 373 7.65 96.5 8.18 27.4 2.96 NS 0.008 U NS 0.008 U NS 0.137 I 0.006 U 0.075 0.084	03/03/21 2.5 1.5 409 3.05 37.5 8.04 25.3 2.27 NS 0.023 I NS 0.023 I NS 0.755 0.755 0.006 U 0.029 0.067	08/05/21 NM 1.5 82.9 6.07 80.6 8.12 30.19 4.05 NS 0.008 U NS 0.72 0.72 0.72 0.006 U 0.014 0.035	10/26/21 4 1.5 423 4.69 60.1 8.01 27.9 17.12 NS 0.008 U NS 0.668 0.668 0.006 U 0.008 0.027 I	02/17/22 2 0.5 438 8.4 53.4 8.15 20.6 2.1 NS 0.008 U NS 0.008 U NS 0.925 0.006 U 0.01 0.034	08/22/22 2.5 1.5 397.6 6.31 85.1 8.41 32.2 2.3 NS 0.008 U NS 0.008 U NS 0.883 1.06 0.177 0.016 0.024 I	11/28/22 NS 1.5 429 7.13 87.4 8.4 25.7 1.22 NS 0.008 U NA 0.717 0.737 0.020 I 0.011 0.017 I	03/27/23 NM 1.5 475.8 6.56 81.8 8.17 26.3 2.88 NS 0.008 U NS 0.008 U NS 0.982 1.01 0.029 0.026 0.030 I	08/07/23 NS NS NS NS NS NS NS NS NS NS NS NS NS	11/21/23 2.5 1.5 390.8 6.67 81.3 8.42 25.5 6.24 NM 0.008 U NS 0.97 0.989 0.019 I 0.018 0.022 I

Notes:

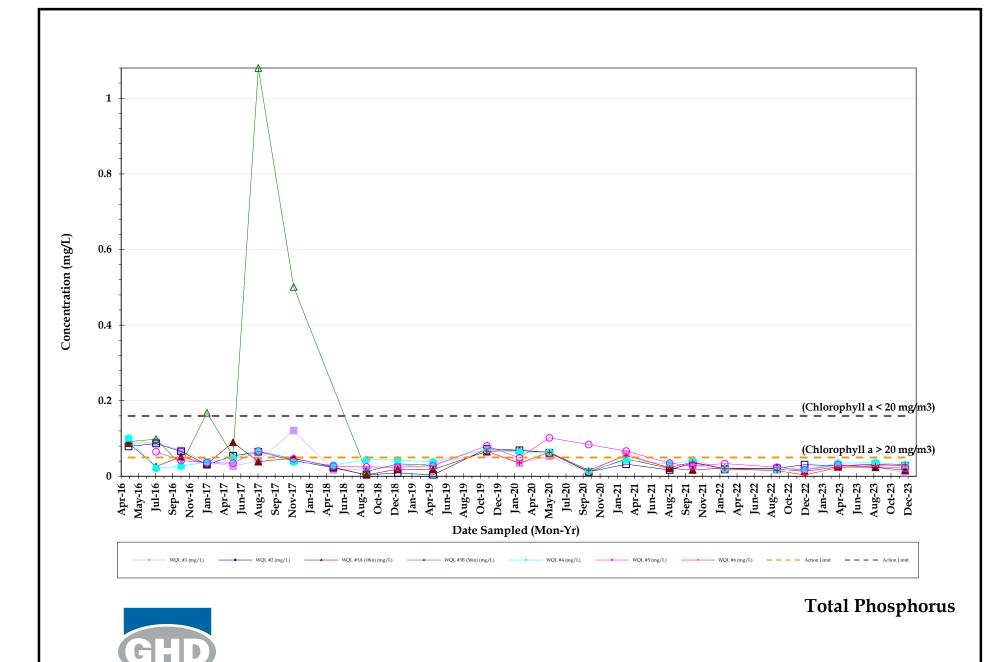

S U

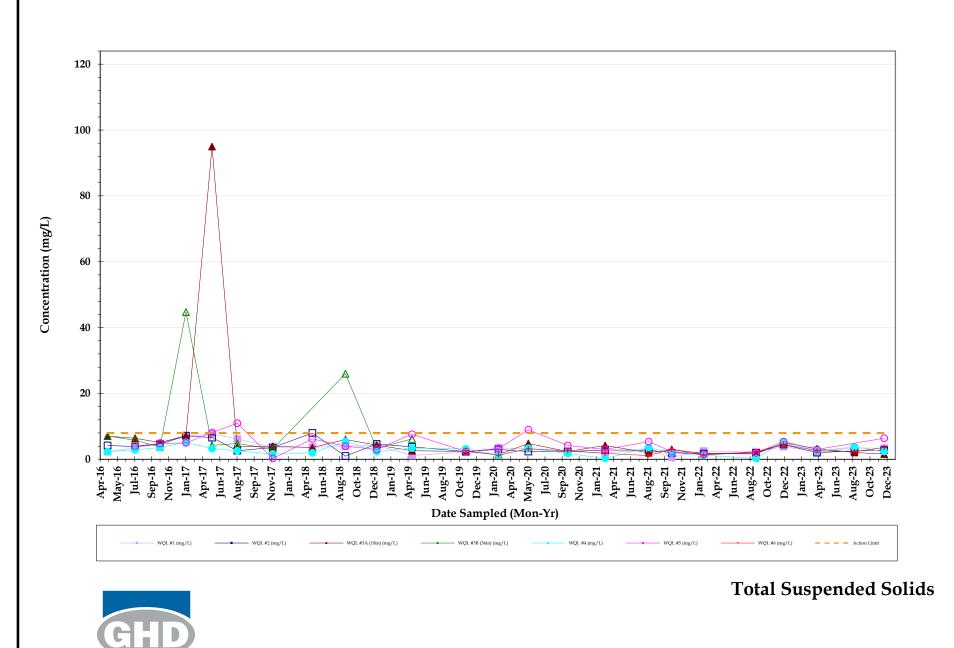

Sample collected from edge of lake
 Not detected at the associated reporting limit
 Not values at or above 100% are possible super-saturation conditions due to high water temperatures and/or high volume of algae.

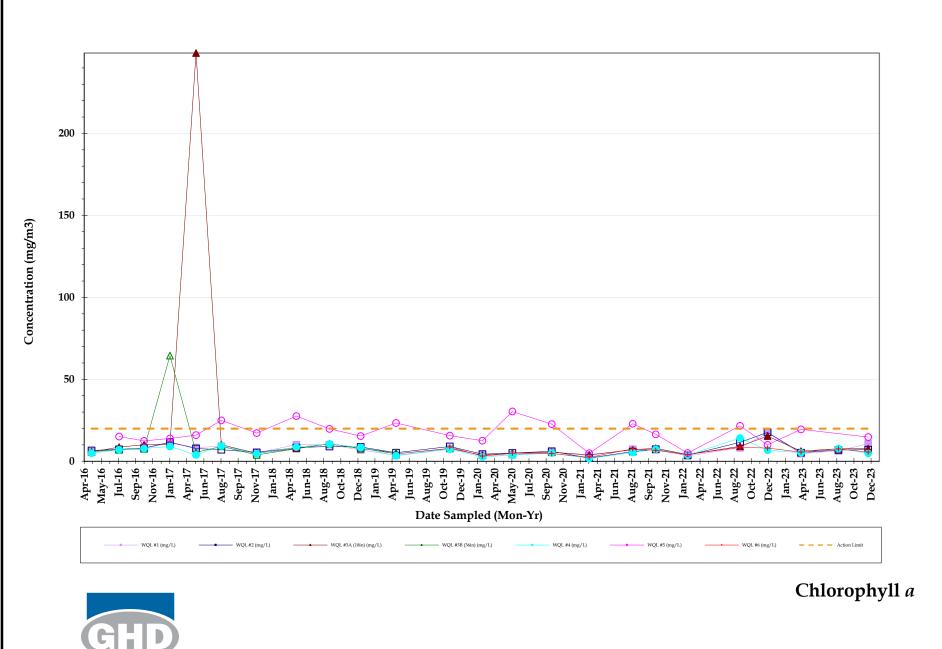
NM - Not Measured

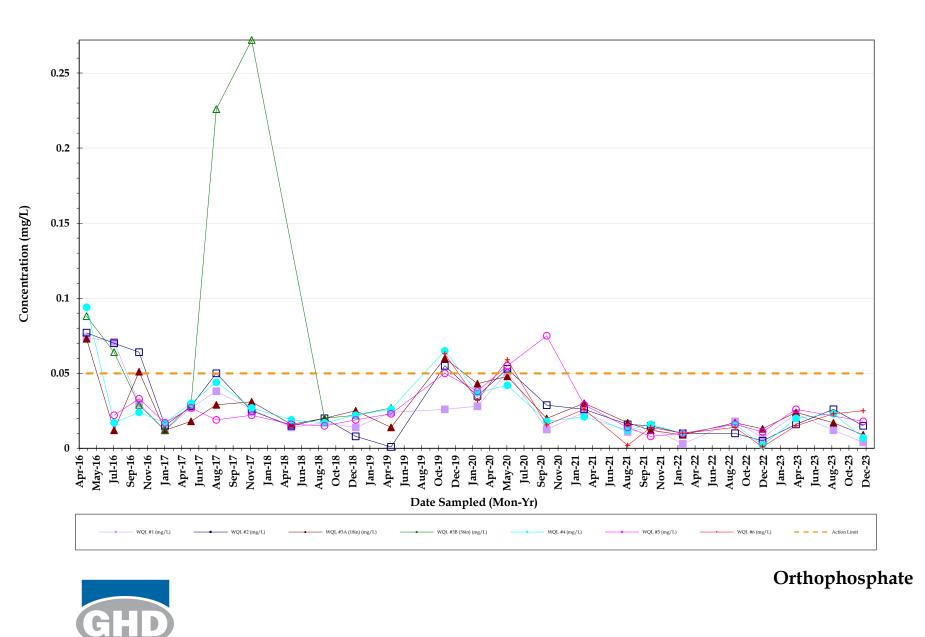


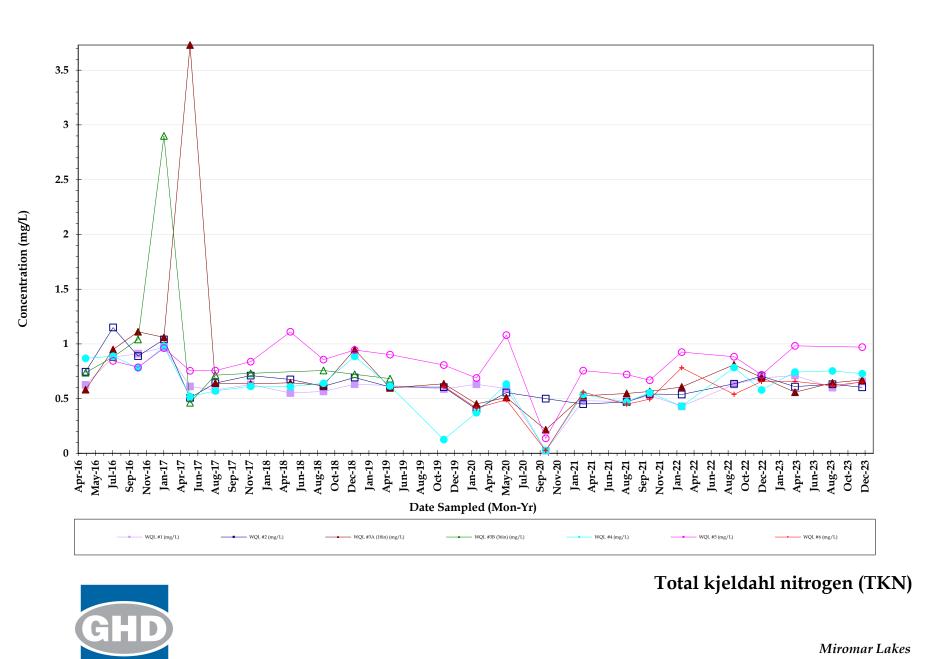
Miromar Lakes Water Quality Surface Water Sample results NOVEMBER 2023

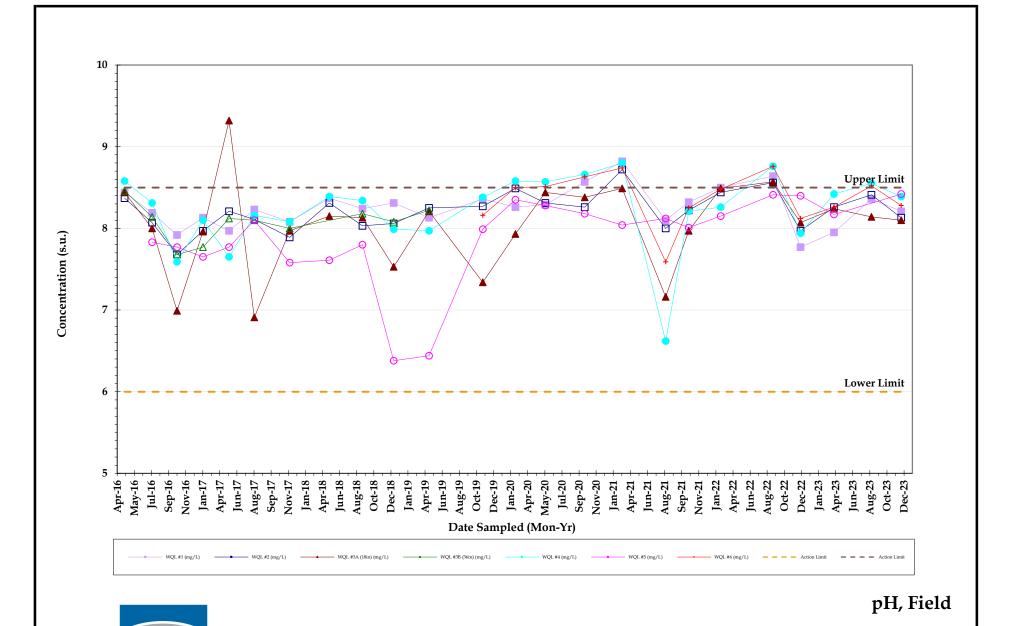


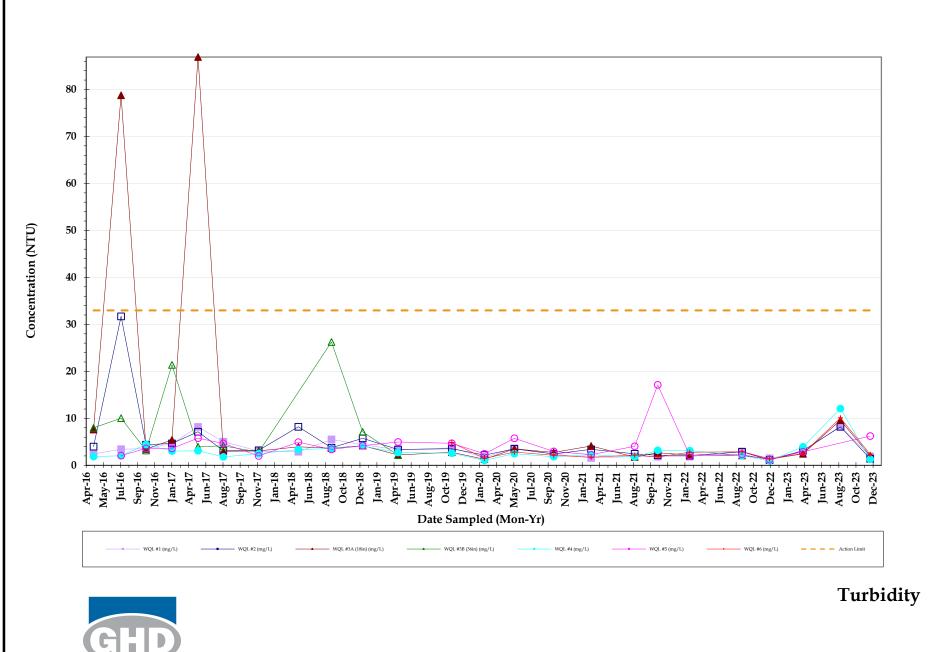


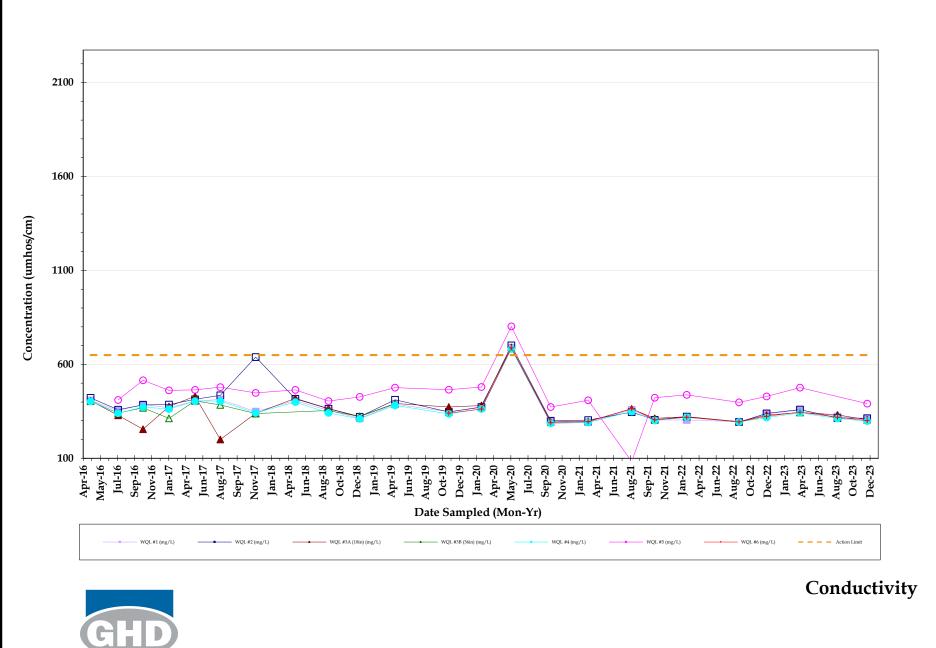

Miromar Lakes Water Quality Surface Water Sample results NOVEMBER 2023

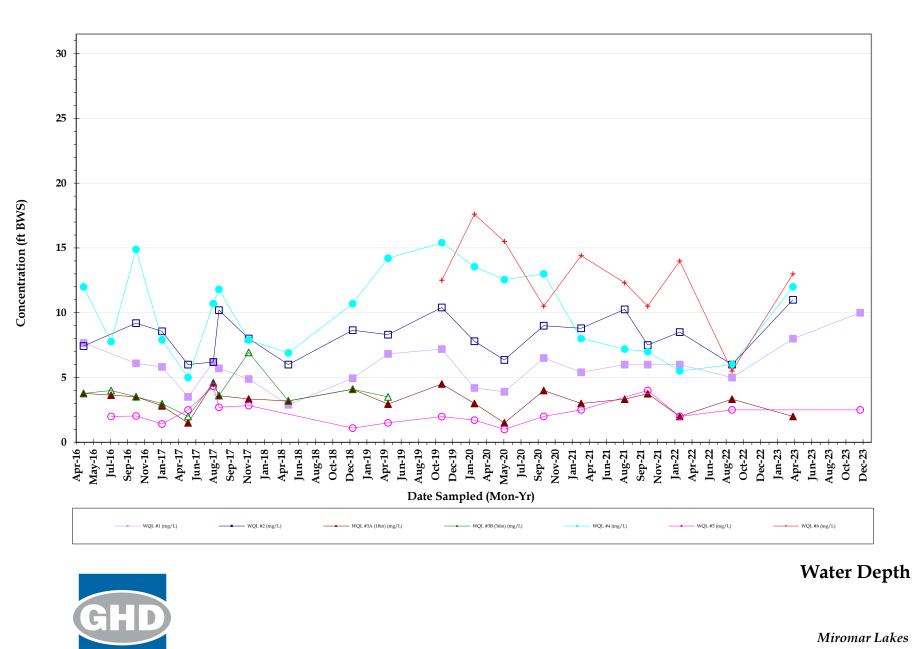


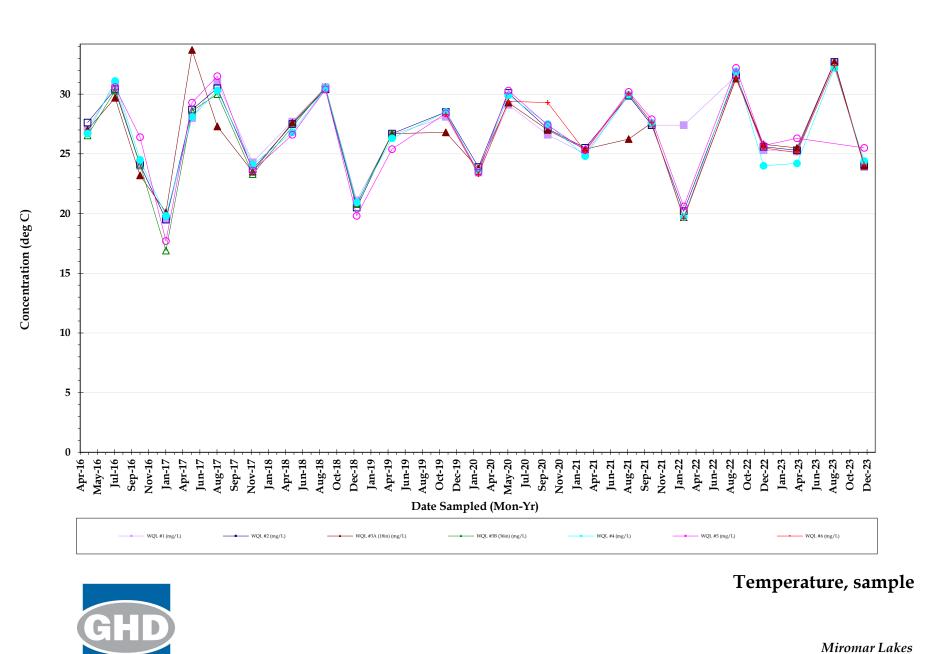

Miromar Lakes Water Quality Surface Water Sample results NOVEMBER 2023











С

FDOH Certification #E84167

ANALYTICAL TEST REPORT

THESE RESULTS MEET NELAC STANDARDS

Submission Number : 23111166

G H D Services, Inc.	Project Name :	MIROMAR LAKES SW SAMPLING
2675 Winkler Ave., Ste.180	Date Received :	11/22/2023
Fort Myers, FL 33901	Time Received :	14:12

Submission Number:	23111166					Sample Date:	11/21/2023	·
Sample Number:	001					Sample Time:	09:35	
Sample Description:	WQL #1					Sample Metho	od: Grab	
Parameter		Result	Units	MDL	PQL	Procedure	Analysis Date/Time	Analyst
AMMONIA NITROGEN		0.008 U	MG/L	0.008	0.032	350.1	11/24/2023 17:44	LK
TOTAL KJELDAHL NITROG	BEN	0.656	MG/L	0.05	0.20	351.2	12/04/2023 16:36	JA
ORTHO PHOSPHORUS AS	3 P	0.004	MG/L	0.002	0.008	365.3	11/22/2023 18:20	МА
TOTAL PHOSPHORUS AS	Р	0.010 l	MG/L	0.008	0.032	365.3	12/01/2023 11:35	JS
CHLOROPHYLL A		10.7	MG/M3	0.25	1.00	445.0	12/12/2023 9:30	MA
TOTAL SUSPENDED SOLI	DS	3.40	MG/L	0.570	2,280	SM2540D	11/24/2023 09:57	IR
BIOCHEMICAL OXYGEN DI	emand	1 U	MG/L	1	4	SM5210B	11/22/2023 14:56	LD/LÐ
NITRATE+NITRITE AS N		0.019	MG/L	0.006	0.024	SYSTEA EASY	11/24/2023 11:57	LK
TOTAL NITROGEN		0.675	MG/L	0.05	0.20	SYSTEA+351	12/04/2023 16:36	JA/LK
		····-			······································		· · · · · · · · ·	
Submission Number:	23111166					Sample Date:	11/21/2023	
Sample Number:	002					Sample Time:	11:50	
Sample Description:	WQL #2					Sample Metho	od: Grab	
D							Analysis	
Parameter		Result	Units	MDL	PQL	Procedure	Date/Time	Analyst
AMMONIA NITROGEN		0.008	MG/L	0,008	0.032	350.1	11/24/2023 18:06	LK
TOTAL KJELDAHL NITROG	EN	0.603	MG/L	0.05	0.20	351.2	12/14/2023 11:52	JA
ORTHO PHOSPHORUS AS	Р	0.015	MG/L	0.002	0.008	365,3	11/22/2023 18:20	MA
TOTAL PHOSPHORUS AS I	P	0.028	MG/L	0.008	0.032	365.3	11/30/2023 10;18	JS
CHLOROPHYLL A		7.16	MG/M3	0.25	1.00	445.0	12/12/2023 9:30	MA
TOTAL SUSPENDED SOLID	S	2.80	MG/L	0.570	2.280	SM2540D	11/24/2023 09:57	IR
BIOCHEMICAL OXYGEN DE	MAND	1 U	MG/L	1	4	SM5210B	11/22/2023 14:56	LD/LD
NITRATE+NITRITE AS N		0.025	MG/L	0.006	0.024	SYSTEA EASY	11/24/2023 11:58	LK

TOTAL NITROGEN

MG/L

0.05

0.20 SYSTEA+351

0.628

JA/LK

12/14/2023 11:52

FDOH Certification #E84167

BENCHMARK

– EnviroAnalytical, Inc.

Submission Number:	23111166					Sample Date:	11/21/2	023
Sample Number:	003					Sample Time:	10:50	
Sample Description:	WQL #3					Sample Methe	od: Grab	
Parameter		Result	Units	MDL	PQL	Procedure	Analysis Date/Time	Analys
AMMONIA NITROGEN		0.008 U	MG/L	0.008	0.032	350.1	11/24/2023 18:3	0 LK
TOTAL KJELDAHL NITROG	EN	0.671	MG/L	0,05	0.20	351.2	12/05/2023 18:5	
ORTHO PHOSPHORUS AS	Р	0.009	MG/L	0.002	0.008	365.3	11/22/2023 18:2	0 MA
TOTAL PHOSPHORUS AS F	5	0.016	MG/L	0.008	0.032	365.3	12/01/2023 11:3	3 JS
CHLOROPHYLL A		7.78	MG/M3	0.25	1.00	445.0	12/12/2023 9:30	MA
TOTAL SUSPENDED SOLID	s	1.60	MG/L	0.570	2.280	SM2540D	11/24/2023 09:53	7 IR
BIOCHEMICAL OXYGEN DE	MAND	1 U	MG/L	1	4	SM5210B	11/22/2023 14:56	3 LD/LD
NITRATE+NITRITE AS N		0.018	MG/L	0.006	0.024	SYSTEA EASY	11/24/2023 11:58	3 LK
TOTAL NITROGEN		0.689	MG/L	0.05	0.20	SYSTEA+351	12/05/2023 18:54	1 JA/LK
Submission Number:	23111166				232	Sample Date:	11/21/20	023
Sample Number:	004					Sample Time:	10:00	
Sample Description:	WQL #4					Sample Metho		
Parameter		Result	Units	MDL.	PQL	Procedure	Analysis Date/Time	Analys
AMMONIA NITROGEN		0.008 U	MG/L	0.008	0.032	350.1	11/24/2023 18:55	ն ԼК
FOTAL KJELDAHL NITROGE	EN	0.728	MG/L	0.05	0.20	351.2	12/14/2023 11:54	
ORTHO PHOSPHORUS AS F	2	0.007 1	MG/L	0.002	0.008	365.3	11/22/2023 18:20	
TOTAL PHOSPHORUS AS P		0.031	MG/L	0.008	0.032	365.3	11/29/2023 16:26	
CHLOROPHYLL A		4.91	MG/M3	0.25	1.00	445.0	12/12/2023 9:30	MA
TOTAL SUSPENDED SOLIDS	3	2.40	MG/L	0.570	2.280	SM2540D	11/24/2023 09:57	
BIOCHEMICAL OXYGEN DEM	MAND	1 U	MG/L	1	4	SM5210B	11/22/2023 14:56	
NITRATE+NITRITE AS N		0.020	MG/L	0.006	0.024	SYSTEA EASY	11/24/2023 11:59	
TOTAL NITROGEN		0.748	MG/L	0.05	0.20	SYSTEA+351	12/14/2023 11:54	
Submission Number:	23111166		<u></u>			Sample Date:	11/21/20	23
	005					Sample Date.	12:55	20
Sample Description:	WQL #5					Sample Metho		
						Sample Metrio	u. Grap	
arameter		Result	Units	MDL	PQL	Procedure	Analysis Date/Time	Analyst
MMONIA NITROGEN		0.008 U	MG/L	0.008	0.032	350.1	11/24/2023 19:36	LK
OTAL KJELDAHL NITROGEI		0.970	MG/L	0.05	0.20	351.2	12/14/2023 11:55	JA
RTHO PHOSPHORUS AS P		0.018	MG/L	0.002	0.008	365.3	11/22/2023 18:20	МА
OTAL PHOSPHORUS AS P		0.022	MG/L	0.008	0.032	365,3	11/30/2023 14:29	JS
HLOROPHYLL A		14.8	MG/M3	0.25	1.00	445.0	12/12/2023 9:30	MA
								-
OTAL SUSPENDED SOLIDS		6.40	MG/L	0.570	2.280	SM2540D	11/24/2023 09:57	IR

1711 12th Street East * Palmetto, FL 34221 * Phone (941) 723-9986 * Fax (941) 723-6061

FDOH Certification #E84167

BENCHMARK

EnviroAnalytical, Inc.

NITRATE+NITRITE AS N TOTAL NITROGEN	0.019 0.989	MG/L MG/L	0.006 0.05	0.024 0.20	SYSTEA EASY SYSTEA+351	11/24/2023 11:59 12/14/2023 11:55	LK JA/LK
Submission Number: 23111166					Sample Date:	11/21/2023	
Sample Number: 006					Sample Time	10:30	
Sample Description: WQL #6					Sample Meth	od: Grab	
Parameter	Result	Units	MDL,	PQL	Procedure	Analysis Date/Time	Analyst
AMMONIA NITROGEN	0.008 U	MG/L	0,008	0.032	350.1	11/24/2023 17:21	LK
TOTAL KJELDAHL NITROGEN	0.652	MG/L	0.05	0.20	351.2	12/14/2023 11:56	JA
ORTHO PHOSPHORUS AS P	0.025	MG/L	0.002	0.008	365.3	11/22/2023 18:20	MA
TOTAL PHOSPHORUS AS P	0.031	MG/L	0.008	0.032	365.3	11/30/2023 10:20	JS
CHLOROPHYLL A	5.67	MG/M3	0.25	1.00	445.0	12/12/2023 9:30	MA
TOTAL SUSPENDED SOLIDS	3.60	MG/L	0.570	2.280	SM2540D	11/24/2023 09:57	IR
BIOCHEMICAL OXYGEN DEMAND	1 U	MG/L	1	4	SM5210B	11/22/2023 14:56	LD/LD
NITRATE+NITRITE AS N	0.020	MG/L	0.006	0.024	SYSTEA EASY	11/24/2023 12:00	LK
TOTAL NITROGEN	0.672	MG/L	0.05	0.20	SYSTEA+351	12/14/2023 11:56	JA/LK

12/20/2023 Date

Dr. Dale D. Dixon Haley Richardson Laboratory Director

QC Manager / Leah Lepore

QC Officer

DATA QUALIFIERS THAT MAY APPLY:

- A = Value reported is an average of two or more determinations.
- B = Results based upon colony counts outside the ideal range.
 H = Value based on field kit determination. Results may not be accurate.
- I = Reported value is between the laboratory MDL and the PQL.
- J1 = Estimated value. Surrogate recovery limits exceeded.
- J2 = Estimated value. No quality control criteria exists for component.
 J3 = Estimated value. No quality control criteria for precision or accuracy not met.
 J4 = Estimated value. Sample matrix interference suspected.
- J5 = Estimated value. Data questionable due to improper lab or field protocols.
- K = Off-scale low. Value is known to be < the value reported. L = Off-scale high. Value is known to be > the value reported.
- N = Presumptive evidence of presence of material.
- O = Sampled, but analysis lost or not performed.
- Q = Sample held beyond accepted hold time.

NOTES:

MBAS calculated as LAS; molecular weight = 340.

PQL = 4xMDL.

ND = Not detected at or above the adjusted reporting limit.

G1 = Accuracy standard does not meet method control limits, but does meet lab control limits that are in agreement with USEPA generated data, USEPA letter available upon request. G2 = Accuracy standard exceeds acceptable control limits. Duplicate and spike values are within control limits. Reported data are usable,

For questions or comments regarding these results, please contact us at (941) 723-9986. Results relate only to the samples.

T = Value reported is < MDL. Reported for informational purposes only and shall not be used in statistical analysis.

U = Analyte analyzed but not detected at the value indicated. V = Analyte detected in sample and method blank. Results for this analyte in associated samples may be biased high. Standard, Duplicate and Spike values are within control limits. Reported data are usable.

Y = Analysis performed on an improperly preserved sample. Data may be inaccurate. Z = Too many colonies were present (TNTC). The numeric value represents the filtration volume.

= Data deviate from historically established concentration ranges.

7 = Data rejected and should not be used. Some or all of QC data were outside criteria, and the presence or absence of the analyte cannot be determined from the data. * = Not reported due to interference.

Oil & Grease - If ellent does not send sufficient sample quantity for spike evaluation surface water samples are supplied by the laboratory.

COMMENTS:

Chlorophyll A lab filtered at E85086 on 11/22/23 at 0811.

4 (Prince By & Affiliation: (Prince Big) W& Walker J. 5 Relinquished By & Affiliation: (Prince Sign)	3 Reinquished By & Affiliation. J. 1 C 1, 1/CC, (Pringe Sign) M. Manda M. McDueury	ر ل ا الا	1 Collector & Attiliation: Orto (Prine & Sign) Jessica Wall	Bach bottle has a label ide The following information All bottles not containing of the client is responsible for sample kit has been creat	 "Sample Type" is used to indicate whether the sample vas a gaib (G) or whether it was a composite (G). "Sample Marrix" is used to indicate whether the sample is being discharged to drividge water (DW), surface water (SW). fresh surface water (TSW), suline surface water (SSW), soil, sediment (SDMAT), or shulge (SLDG). "Combane" Type" is used to indicate whether the container is pleasic (F) or glass (O). Sample must be trifferent of more in whether the sample to first (O) or glass (O). Sample must be trifferent of more in the same value for glass (O). Under "Preservative" list any preservatives that was added to the sample comainer. Let Number of preservative used is specific to the bottles included in the let. NaThio, HSO, and HNO, do not increasynation dates per the manufacturer. Mathematic to the sample comainer. Let Number of preservative used is specific to the bottles included in the let. NaThio, HSO, and HNO, do not increasynation dates per the manufacturer. Mathematic before a comparison of the sample comainer. Let Number of preservative used is specific to the bottles included in the let. NaThio, HSO, and HNO, do not increasynation dates per the manufacturer. Mathematic beneficient of the sample container. Let Number of preservative used is specific to the bottles included in the let. NaThio, HSO, and HNO, do not increasynatic dates per the manufacturer. Mathematic better and container. 	Wal PG	NQ # 5	WAL # 4	WQL#3	5# 1000	17021				Ш	rtoject Nullinet: 11223022-01	Chain of Custody Form: Miromar Lakes SW Sampling	Benchmark EA South 1001 Corporate Avenue, Suite 102 North Port, FL 34289 (941) 625-3137 / (800) 736-9986 (941) 423-7336 fax Sample Temperature checked upon receipt at BEAS with Temperature Gun ID #7
BEA N	-BEAS	¢	the state	Everyoive constrained in the bottle, sample type, clitent IT after collection with permanent black ink: due and this opriate sample prior to collection ant. Please notes special sampling events on the sample s unless otherwise noted.	ib (G) or whether it was a composite (C), g discharged to drinking water (DW), groundwater (G) state (P) or glass (G). tion: The temperature during storage should be left tion. The temperature during storage should be left to sample container. Lot Number of preservative uses	Grab	Grab	Grab	Grab	Grab	Grab ·				Type ¹	Cam	r Lakes SW Sampling	Benchmark EA, Inc. 1711 12 th St. East Palmetto, FL 34221 (941) 723-9986 / (800) 736-9986 (941) 723-6061-fax Sample Temperature checked upon receipt at BEA with Temperature Gun ID #258
Date: 11/12/23 Date:	Dates 11/2/2/23	Date: 4 (21 /23	Date: 11/2/123	, and parameters for te of collection, san custody form.	V), surface water (S s than or equal to is specific to the b	s sw	s sw	WS 6	WS 0	WS SW	S SW				e^{1} Matrix ²	C an	D t	on receipt a
Time:		Time: 1533	3 IS32	analysis. pler's name or initials, and any fiel	W), fresh surface water (FSW), sai S°C (42.8°F), atles included in the kit. NeThio, H	Date/Time:	Date/Time;	Date/Time:	Date/Time:	Date/Time:	Date/Time; 11/	1 x ½ Pint Plastic	1.1mL 1:4 H ₂ SO ₄ pH<2 t	NO3-NO2 (353.2) TKN (351.2) NH3 (350.1) TP (365.3) T-N (Calc.)	2 Unique bottle ID 1A	rluiie. 840, QC neput		Client:
Received By (Print & Sign) Received By (Print & Sign)	(Principal Sig	Received By & Affi (Pring & Sign) (Why d d d d	Received By (Print & Sign)	1 number or ID.	ne surface water (S SO1 and HNO1 do			•	•	•	52/12	astric	pH<2 ⊈	(353.2) 13 (350.1) [(Cale.)			Ĺ	GHD Services, 2675 Winkler Ave. Su Ft. Myers Fl 33901 Erik Isern (239) 215- Email EDD Reports t 2022 PO# 34043123
 Received By & Affiliation: (Print & Sign) Received By & Affiliation: (Print & Sign)	Received By & Attiliation: Printed Sim Nerdez	Print & Sign (Print & Sign) Mudd Wall 4 NW	(Print & Sign) Connor Hu		SW), soil, sediment (SDMAT), or sludg not izeve expiration dates per the manuf	1030	1255	1000	<i>\6 S</i> ∂/	1130		1 x 2 Quart Plastic	Plain	BOD5 (SM5210B) TSS (SM2540D)	Unique bottle ID 1B	Parameters. Preservative ⁴ . Container Type ³ / Total # of Containers = 24	Laboratory S	GHD Services, Inc. (HSA ENG) Kit Shipped 1 2675 Winkler Ave, Suite 180 Ft. Myers FI 33901 Erik Isern (239) 215-3914 Shannon Tucker 239-210-8653 Email EDD Reports to: Connor Haydon (<u>Connor.Haydon@ehd.com</u>) 2022 PO# 34043123 c
E D	L BEA	(ind q mer	uyden (-)	Laboratory Sample pH 〜: ば BEA Ten めたわち	e (SLDG). schurz. Micro botiles ze pro-preserved	•		•	٠	•		1 x ½ Pint Plastic	Plain	Ortho-Phos (Lab Filtered) ^(365,3)	Unique bottle ID 1C	ntainer Tyne ³ / Total # of Co	aboratory Submission #:	5) Kit i oon Tucker 239-210-8653 Ion (<u>Connor Haydon@et</u>
- 1020 Date: Date:	Uht A3	SEAS 11/21/23	A Dane 11/21/23	Laboratory Sample Acceptability_ H <2 : 17 BEA Temperature: 0,47 BEAS Trapp. 415	ediment (SDMT), or sludge (SLDG). Junion dats per the manufacturar. Murc boules are pre-preserved at manufacturing stage. 40mL viais are pre-preserved at manufacturing stage							1 x 500mL Opaque Plastic	Plain	Chlorophyll a (445.0) Filtered @ 072AS	Unique bottle ID 1D	Tainers = 24		Kit Shipped to client via UPS Standard in 1 large cooler <u>aghd com</u>) Jessic a . in al Moral <u>Cori a COOLCEGEOG</u> h
13 MA Time:	ll H		Time: 1532		<u> ಸ ಗಾಮಾರ್ಟಿಯಾಗಿದ್ದ ಕ್ರಾ</u> ಕ್ಷ	6	1	2	ر بر	ر و	(Ű,	Submission #	Laboratory	Com	n I large cooler

htoh alloy

NELAP Certification #E84167

BENCHMARK

	İ								-		
SUBMISSION NUMBER	SAMPLE NUMBER	METHOD	ANALYTE	ANALYSIS DATE/TIME	QC FLAG	QC VALUE	SAMPLE RESULT	LR RESULT	LR %RSD	SPK RESULT	STD-SPK %RFC
23111153 - 001	701775	350.1	AMMONIA NITROGEN	11/24/2023 17:25	LR		44 700	48.200	500		
		350.1	AMMONIA NITROGEN		MB	0.00	000 0	007-01	00.0		
23111166 - 002	701811	350.1	AMMONIA NITROGEN	11/24/2023 18:06	SPK	1.00	0.010			0000	
		350.1	AMMONIA NITROGEN	11/24/2023 15:08	STD	1.00	0.983			0.320	92.0
23111154 - 001	701778	351.2	TOTAL KJELDAHL NITROGEN	12/04/2023 12:24	LR		898.000	936 000	7 04		96.3
		351.2	TOTAL KJELDAHL NITROGEN	12/04/2023 16:23	MB	0.00	0.000		5		
23110995 - 002	701447	351.2	TOTAL KJELDAHL NITROGEN	12/04/2023 13:24	SPK	2.00	0.860			3 ORN	0 10 10
		351.2	TOTAL KJELDAHL NITROGEN	12/04/2023 16:29	STD	2.50	2.260			7.900	0.601
23111134 - 001	701725	365.3	ORTHO PHOSPHORUS AS P	11/22/2023 12:45	LR		0.230	0.224	1 84		40.4
		365.3	ORTHO PHOSPHORUS AS P	11/22/2023 12:40	MB	0.00	0.000				
23111134 - 002	701726	365.3	ORTHO PHOSPHORUS AS P	11/22/2023 13:39	SPK	0.20	0.560			0.750	050
		365.3	ORTHO PHOSPHORUS AS P	11/22/2023 13:03	STD	0.20	0.195			2012	07.2 07.2
23110653 - 002	700816	365.3	TOTAL PHOSPHORUS AS P	11/30/2023 15:28	LR		0.014	0.013	1.06		0.10
		365.3	TOTAL PHOSPHORUS AS P	11/30/2023 11:40	MB	00.0	0.000				
2311 0 913 - 001	701297	365.3	TOTAL PHOSPHORUS AS P	11/30/2023 12:25	SPK	0.20	0.131			0.337	103.0
		365.3	TOTAL PHOSPHORUS AS P	11/30/2023 12:16	STD	0.20	0.190				05.0
23111157 - 04B	701796	445.0	CHLOROPHYLL A	12/12/2023 9:30	ГR		4,459	4.510	0.76		
		445.0	CHLOROPHYLL A	12/12/2023 09:30	MB	0.00	0.000				
23111064 - 001	701614	SM2540D	TOTAL SUSPENDED SOLIDS	11/24/2023 09:57	Ч		112.000	104.000	5.24		
		SM2540D	TOTAL SUSPENDED SOLIDS	11/24/2023 09:57	MB	0.00	0.000				
		SM2540D	TOTAL SUSPENDED SOLIDS	11/24/2023 09:57	STD	951.00	928.000				97 G
23111247 - 001	701928	SM5210B	BIOCHEMICAL OXYGEN DEMAND	11/22/2023 14:56	LR		872.000	867,000	0.41		
		SM5210B	BIOCHEMICAL OXYGEN DEMAND	11/22/2023 14:56	MB	0.00	0.000				2
23111149 - 002	701766	SYSTEA EASY	NITRATE+NITRITE AS N	11/24/2023 11:47	LR			8.190	1.25		
		SYSTEA EASY	NITRATE+NITRITE AS N	11/24/2023 11:45	MB	0.00	0.000				

Zmittab-cda Zmittab-cda Smittab-cda Immediate Immediate Smittab-cda Zmittab-cda <	2 70176 SYSTEAL EASY ITIAARCAS 11.004000 10.20 6.400 8.301 SYSTEAL EASY NITANTE-INTRITE_SIN 11.004000 11.004000 11.004000 12.000 8.301

Data Compliance Report

January 11, 2024

То	Mr. Bruce Bernard Manager of Field Operations Calvin, Giordano & Associates, Inc. 1800 Eller Drive, Suite 600 Fort Lauderdale, FL 33316	Contact No.	716-205-1977
Copy to	File	Email	Sheri.Finn@ghd.com
From	Sheri Finn/eew/31	Project No.	11225022
Project Name	Miromar Lakes Surface Water Sampling		
Subject	Analytical Results Compliance Report Surface Water Quality Monitoring Miromar Lakes Fort Myers, Florida November 2023		

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

1. Compliance Review

Samples were collected in November 2023 in support of the Miromar Lakes Surface Water Quality Monitoring sampling. The analytical results are summarized in Table 1. All samples were prepared and analyzed within the method required holding times. The method blank results were non-detect. All reported laboratory control sample (LCS) analyses demonstrated acceptable accuracy. Laboratory duplicate analyses were performed for some analytes. All results were acceptable, indicating good analytical precision. The matrix spike (MS) results were evaluated per the laboratory limits. The MS analyses performed were acceptable, demonstrating good analytical accuracy.

Based on this compliance review, the results in Table 1 are acceptable for use.

Regards

Sheri Finn

Analyst

			s	TATION ID:	_	WQL #1	
			L	OCATION:	<u>.</u>	WQL # 1	F brage
				ATE/TIME:	_1	1/21/23	935
			A	LL TIMES A	RE:	ETZ or (circle o	CTZ one)
	sle One) (collectors) (collectors) Small	Stream	d <10HA) middle of oper representative	n water)	orgo Piver	10HA) les at selected lo es in representat	
water Cha	racteristics						
(Average	ATER DEPTH: of 2 measurements) (Circle One if	10.0	Flow Flow	() within Banks		epth:(.@	(feet)
STREAM		Low	\times)			
WATER L WATER S	EVEL: (Circle One) AMPLE COLLECTION DEVIC (Circle One)		Dorn Direct	Grab with le Bottle	Dipper	Other	
Field Measur	ements	Meter ID	#		Field Meas Read By:		
Time (24 hr.)	Surface Depth Collected	pH* (SU)	D.O.(mg./L)		Temp (°C)	Conductivity (umhos/cm)	Turbidity (NTU)
935	(feet)	8.21	6.82	82.0	23.9	312	1.91
Time (24 hr.)	Bottom Depth Collected (feet)	pH (SU)	D.O.(mg./L)	D.O. (%)	Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)
tall	of preserved sample: number	of drops of s	ulfuric acid add	ted in field to	achieve pH o	of less than 2:	N/4
	ples immediately placed on ic		and to a day				(Yes) No
Jam							
WEATHER C	ONDITIONS: (circle) raining	, clear, p	artly cloudy, v	vindy			
PERSONNEL	1	nor	H. J	essie	W		

Sample Collected upstream @ bridge Secchi Jisk: 2.0 - Jt REMARKS:

			s	TATION ID:	_	WQLH	2
			L	OCATION:	_	@ buou	1
			C	ATE/TIME:	_	1/21/23	1150
			A	LL TIMES A	RE:	ETZ or (circle	CTZ one)
	e One) (colled	Stream	d <10HA) middle of oper representative	n water)		10HA) es at selected lo es in representat	
Water Char	acteristics	1					0
		n	(fee	t)	Sample De	epth:	(feet)
STREAM F	f 2 measurements) (Circle One if LOW: applicable)	No	Flow Flow	within Banks	Flood C	onditions	
WATER LE	VEL: (Circle One)	Low				Other	
		Nor Var	Dorn Direct	Grab with	Dipper	Other	
WATER SA	MPLE COLLECTION DEVIC (Circle One)			le Bottle	Dipp		
	(Circle One)		Samp		Field Meas	urements	
Field Measure	(Circle One)	Meter ID	Samp	le Bottle		initials) Conductivity	Turbidity (NTU)
	(Circle One)	Meter ID	Samp	le Bottle	Field Meas Read By: (initials) Conductivity (µmhos/cm) 3/4	(NTU) 1.40
Field Measure Time (24 hr.)	(Circle One) ments Surface Depth Collected (feet)	Meter ID pH* (SU)	Samp # D.O.(mg./L)	D.O. (%)	Field Meas Read By: (Temp (°C)	initials) Conductivity (µmhos/cm)	(NTU)
Field Measure Time (24 hr.) I (50 Time (24 hr.)	(Circle One) ments Surface Depth Collected (feet) I, O Bottom Depth Collected (feet)	Meter ID pH* (SU) ℓ/, 3 pH (SU)	# D.O.(mg./L) 7. 04 D.O.(mg./L)	D.O. (%) Ø 3 9 D.O. (%)	Field Meas Read By: (Temp (°C) 24. L Temp (°C)	initials) Conductivity (µmhos/cm) 3/4 Conductivity (µmhos/cm)	(NTU) 1.40 Turbidity
Field Measure Time (24 hr.) II 50 Time (24 hr.)	(Circle One) ments Surface Depth Collected (feet) Preserved sample: number	Meter ID pH* (SU) U . 13 pH (SU) of drops of s	# D.O.(mg./L) 7. 04 D.O.(mg./L)	D.O. (%) Ø 3 9 D.O. (%)	Field Meas Read By: (Temp (°C) 24 . L Temp (°C)	initials) Conductivity (µmhos/cm) 3/4 Conductivity (µmhos/cm)	(NTU) 1.40 Turbidity (NTU)
Field Measure Time (24 hr.) II 50 Time (24 hr.)	(Circle One) ments Surface Depth Collected (feet) I, O Bottom Depth Collected (feet)	Meter ID pH* (SU) U . 13 pH (SU) of drops of s	# D.O.(mg./L) 7. 04 D.O.(mg./L)	D.O. (%) Ø 3 9 D.O. (%)	Field Meas Read By: (Temp (°C) 24 . L Temp (°C)	initials) Conductivity (µmhos/cm) 3/4 Conductivity (µmhos/cm)	(NTU) 1.40 Turbidity (NTU)
Field Measure Time (24 hr.) 1 (50 Time (24 hr.) *pH of Sampl	(Circle One) ments Surface Depth Collected (feet) Preserved sample: number	Meter IE pH* (SU) 𝔅. 3 pH (SU) of drops of s e?	# D.O.(mg./L) 7.04 D.O.(mg./L)	D.O. (%) 83.9 D.O. (%)	Field Meas Read By: (Temp (°C) 24 . L Temp (°C)	initials) Conductivity (µmhos/cm) 3/4 Conductivity (µmhos/cm)	(NTU) 1.40 Turbidity (NTU)
Field Measure Time (24 hr.) 1 (50 Time (24 hr.) *pH of Sampl	(Circle One) ments Surface Depth Collected (feet) 1, 0 Bottom Depth Collected (feet) preserved sample: number es immediately placed on ico NDITIONS: (circle) raining	Meter ID pH* (SU) U.13 pH (SU) of drops of s e?	# D.O.(mg./L) 7.04 D.O.(mg./L)	In Bothé	Field Meas Read By: (Temp (°C) 24. L Temp (°C) D achieve pH o	initials) Conductivity (µmhos/cm) 3/4 Conductivity (µmhos/cm)	(NTU) 1.40 Turbidity (NTU)
Field Measure Time (24 hr.) 1(50 Time (24 hr.) *pH of Sampl WEATHER CO	(Circle One) ments Surface Depth Collected (feet) I, 0 Bottom Depth Collected (feet) preserved sample: number es immediately placed on ice NDITIONS: (circle) raining DN SITE:	Meter ID pH* (SU) Ø.13 pH (SU) of drops of s e? clear, p clear, p	samp D.O.(mg./L) 7.04 D.O.(mg./L) ulfuric acid add	Image: D.O. (%) 03 9 Image: D.O. (%) 000 9 <td< td=""><td>Field Meas Read By: (Temp (°C) 24. L Temp (°C) D achieve pH o</td><td>initials) Conductivity (µmhos/cm) 3/9 Conductivity (µmhos/cm) of less than 2:</td><td>(NTU) 1.40 Turbidity (NTU)</td></td<>	Field Meas Read By: (Temp (°C) 24. L Temp (°C) D achieve pH o	initials) Conductivity (µmhos/cm) 3/9 Conductivity (µmhos/cm) of less than 2:	(NTU) 1.40 Turbidity (NTU)
Field Measure Time (24 hr.) 1(50 Time (24 hr.) *pH of Sampl WEATHER CO	(Circle One) ments Surface Depth Collected (feet) 1, 0 Bottom Depth Collected (feet) preserved sample: number es immediately placed on ico NDITIONS: (circle) raining	Meter ID pH* (SU) Ø.13 pH (SU) of drops of s e? clear, p clear, p	samp D.O.(mg./L) 7.04 D.O.(mg./L) ulfuric acid add	Image: D.O. (%) 03 9 Image: D.O. (%) 000 9 <td< td=""><td>Field Meas Read By: (Temp (°C) 24. L Temp (°C) D achieve pH o</td><td>initials) Conductivity (µmhos/cm) 3/9 Conductivity (µmhos/cm) of less than 2:</td><td>(NTU) 1.40 Turbidity (NTU)</td></td<>	Field Meas Read By: (Temp (°C) 24. L Temp (°C) D achieve pH o	initials) Conductivity (µmhos/cm) 3/9 Conductivity (µmhos/cm) of less than 2:	(NTU) 1.40 Turbidity (NTU)

				STATION ID		WQLH	13
			1	OCATION:	-		al weir
			1	Date/Time:		11/21/23	
			,	ALL TIMES A	ARE:	ETZ or (circle	CTZ one)
WATERBC (Circl	e One) (colle Small	Stream	nd <10HA) n middle of ope representative	n water)	Large River	10HA) les at selected le es in representa	
Water Char							
	TER DEPTH: Y	im	(fee	t)	Sample D	epth:	(feet)
STREAM F	(Circle One if	No	Flow Flow	within Banks	Flood C	onditions	
WATER LE	VEL: (Circle One)	Lov	v Norm	al High			
WATER SA	MPLE COLLECTION DEVI (Circle One)	CE Var		t Grab with	Dipper	Other	
Field Measure	monto	Meter IC	\ #		Field Meas Read By: (
Time (24 hr.)	Surface Depth Collected				Temp (°C)	Conductivity	Turbidity
		pri (30)	D.O.(mg./L)	D.O. (%)	Temp (°C)	(µmhos/cm)	(NTU)
1050	(feet)	8.10	1.5		24.0	(µmhos/cm)	
1 ()570 Time (24 hr.)	(feet)		1.5	D.O. (%) &1.6 D.O. (%)			(NTU)
Time (24 hr.)	(feet) I. O Bottom Depth Collected (feet)	8 . 10 pH (SU)	6.82 D.O.(mg./L)	£1,6 D.O. (%)	24.0 Temp (°C)	(µmhos/cm) 365 Conductivity (µmhos/cm)	(NTU) 2.02 Turbidity
Time (24 hr.) *pH of	(feet) i. <i>O</i> Bottom Depth Collected (feet) preserved sample: number	B . 10 pH (SU)	6.82 D.O.(mg./L)	£1,6 D.O. (%)	24.0 Temp (°C)	(µmhos/cm) 365 Conductivity (µmhos/cm)	(NTU) 2.02 Turbidity (NTU)
Time (24 hr.) *pH of	(feet) I. O Bottom Depth Collected (feet)	B . 10 pH (SU)	6.82 D.O.(mg./L)	£1,6 D.O. (%)	24.0 Temp (°C)	(µmhos/cm) 365 Conductivity (µmhos/cm)	(NTU) 2.02 Turbidity (NTU) N/A
Time (24 hr.) *pH of Sampl	(feet) i. <i>O</i> Bottom Depth Collected (feet) preserved sample: number	8.10 pH (SU) of drops of s e?	6.82 D.O.(mg./L)	EI.G D.O. (%)	24.0 Temp (°C)	(μmhos/cm) 365 Conductivity (μmhos/cm)	(NTU) 2.02 Turbidity (NTU) N/A
Time (24 hr.) *pH of Sampl	(feet) 1. <i>O</i> Bottom Depth Collected (feet) preserved sample: number es immediately placed on ic NDITIONS: (circle) raining	g . i0 pH (SU) of drops of s e? i, clear, p	6.82 D.O.(mg./L)	El.G D.O. (%) ded in field to	24.0 Temp (°C)	(μmhos/cm) 365 Conductivity (μmhos/cm)	(NTU) 2.02 Turbidity (NTU) N/A
Time (24 hr.) *pH of Sampi WEATHER COI PERSONNEL C	(feet) I. つ Bottom Depth Collected (feet) preserved sample: number es immediately placed on ic NDITIONS: (circle) raining ON SITE: じょいへの	B. ID pH (SU) of drops of s e? I, clear, pr B. H.	6.82 D.O.(mg./L) ulfuric acid ad artly cloudy, v	El.G D.O. (%) ded in field to	24.0 Temp (°C) D achieve pH o	(μmhos/cm) 365 Conductivity (μmhos/cm)	(NTU) 2.02 Turbidity (NTU) N/A
Time (24 hr.) *pH of Sampl WEATHER CO	(feet) 1. <i>O</i> Bottom Depth Collected (feet) preserved sample: number es immediately placed on ic NDITIONS: (circle) raining	B. 10 pH (SU) of drops of s e? h. clear, p d H.	6.82 D.O.(mg./L) ulfuric acid ad artiy cloudy, v Jessie	を1.6 D.O. (%) ded in field to vindy	24.0 Temp (°C) D achieve pH o	(μmhos/cm) 365 Conductivity (μmhos/cm)	(NTU) 2.02 Turbidity (NTU) N/A

			3	STATION ID	-	WazH	4
			1	OCATION:	Ĺ	War H. adjacent	to Duoy
			1	DATE/TIME:	_	11/21/2	3 1000
			,	ALL TIMES /	ARE:	CETZ or (circle	CTZ
(Circ	le One) (colle Smal (colle	Stream	nd <10HA) n middle of ope representative		Large River	10HA) bles at selected to bles in representa	
Water Char	acteristics					1.5	-
	TER DEPTH: f 2 measurements)	nm	(fee	t)	Sample D	epth:	(feet)
STREAM F	(Circle One if LOW: applicable)	No	Flow Flow	within Banks	Flood C	onditions	
WATER LE	VEL: (Circle One)	Lov	Norm	al High			
WATER SA	MPLE COLLECTION DEV (Circle One)	ICE Var	n Dorn Direc Samp	Grab with	Dipper	Other	
Field Measure	ments	Meter I	1#		Field Meas Read By:		
Field Measure Time (24 hr.)	ments Surface Depth Collected (feet)		D.O.(mg./L)	D.O. (%)	Read By: Temp (°C)		Turbidity (NTU)
	Surface Depth Collected			D.O. (%) 95. 2	Read By:	(initials) Conductivity	(NTU) 1.30
Time (24 hr.)	Surface Depth Collected (feet)	pH* (SU)	D.O.(mg./L)		Read By: Temp (°C)	(initials) Conductivity (µmhos/cm)	(NTU)
Time (24 hr.) 106 <i>0</i> Time (24 hr.)	Surface Depth Collected (feet) 4.0 Bottom Depth Collected (feet)	рН* (SU) 8.39 рН (SU)	D.O.(mg./L) 7.94 D.O.(mg./L)	95. 2 D.O. (%)	Read By: Temp (°C) 24-4 Temp (°C)	(initials) Conductivity (µmhos/cm) 218 Conductivity (µmhos/cm)	(NTU) I.30 Turbidity
Time (24 hr.) 1060 Time (24 hr.) *pH of	Surface Depth Collected (feet) Y.O Bottom Depth Collected	pH* (SU) 8.39 pH (SU)	D.O.(mg./L) 7.94 D.O.(mg./L)	95. 2 D.O. (%)	Read By: Temp (°C) 24-4 Temp (°C)	(initials) Conductivity (µmhos/cm) 218 Conductivity (µmhos/cm)	(NTU) I.30 Turbidity (NTU)
Time (24 hr.) 1060 Time (24 hr.) *pH of Sample	Surface Depth Collected (feet) 4.0 Bottom Depth Collected (feet) preserved sample: number	pH* (SU) g . 3 9 pH (SU) r of drops of s pe?	D.O.(mg./L) 7.94 D.O.(mg./L)	95.2 D.O. (%) ded in field to	Read By: Temp (°C) 24-4 Temp (°C)	(initials) Conductivity (µmhos/cm) 218 Conductivity (µmhos/cm)	(NTU) 1.30 Turbidity (NTU) N/A
Time (24 hr.) 1060 Time (24 hr.) *pH of Sample WEATHER COL	Surface Depth Collected (feet) Y, () Bottom Depth Collected (feet) preserved sample: number es immediately placed on ic NDITIONS: (circle) raining	pH* (SU) g . 3 1 pH (SU) r of drops of s re? g. clear, pr	D.O.(mg./L) 7.૧٩ D.O.(mg./L) sulfuric acid add	95.2 D.O. (%) ded in field to	Read By: Temp (°C) 24-4 Temp (°C)	(initials) Conductivity (µmhos/cm) 218 Conductivity (µmhos/cm)	(NTU) 1.30 Turbidity (NTU) N/A
Time (24 hr.) 1060 Time (24 hr.) *pH of Sample	Surface Depth Collected (feet) Y, () Bottom Depth Collected (feet) preserved sample: number es immediately placed on ic NDITIONS: (circle) raining	pH* (SU) g . 3 1 pH (SU) r of drops of s re? g. clear, pr	D.O.(mg./L) 7.ๆฯ D.O.(mg./L)	95.2 D.O. (%) ded in field to	Read By: Temp (°C) 24-4 Temp (°C)	(initials) Conductivity (µmhos/cm) 218 Conductivity (µmhos/cm)	(NTU) 1.30 Turbidity (NTU) N/A
Time (24 hr.) 1060 Time (24 hr.) *pH of Sample WEATHER COL	Surface Depth Collected (feet) Y, () Bottom Depth Collected (feet) preserved sample: number es immediately placed on ic NDITIONS: (circle) raining IN SITE:	pH* (SU) g . 3 9 pH (SU) r of drops of s re? g. clear, pr	D.O.(mg./L) 7.૧૫ D.O.(mg./L) sulfuric acid add	95.2 D.O. (%) Jed in field to vindy	Read By: Temp (°C) 24-4 Temp (°C)	(initials) Conductivity (µmhos/cm) 2 7 8 Conductivity (µmhos/cm) of less than 2:	(NTU) I. <u>3</u> 0 Turbidity (NTU) N/A (Yeg) No
Time (24 hr.) 1060 Time (24 hr.) *pH of Sample WEATHER COI PERSONNEL C	Surface Depth Collected (feet) Y, () Bottom Depth Collected (feet) preserved sample: number es immediately placed on ic NDITIONS: (circle) raining	pH* (SU) g . 3 9 pH (SU) r of drops of s re? g. clear, pr	D.O.(mg./L) 7.૧૫ D.O.(mg./L) sulfuric acid add	95.2 D.O. (%) Jed in field to vindy	Read By: Temp (°C) 24-4 Temp (°C)	(initials) Conductivity (µmhos/cm) 2 7 8 Conductivity (µmhos/cm) of less than 2:	(NTU) I. <u>3</u> 0 Turbidity (NTU) N/A (Yeg) No

			5	STATION ID	:	WQL	#5	
			ι	OCATION:		Just upstro	iem of	
			C	DATE/TIME:	_	11/21/23	1255	
			F	LL TIMES A	_	ETZ or (circle	CTZ	
WATERBO (Circle	e One) (collect Small :	Stream	nd <10HA) middle of open representative		Large River	10HA) les at selected k es in representa		
Water Chara	acteristics							
(Average of STREAM FI WATER LE	TOTAL WATER DEPTH: 2.5 (feet) Sample Depth: 1.5 (Average of 2 measurements) (Circle One if (feet) (feet) STREAM FLOW: applicable) No Flow Elow within Barks Flood Conditions WATER LEVEL: (Circle One) Low Normal High							
WATER SA	VATER SAMPLE COLLECTION DEVICE Van Dorn Direct Grab with Dipper Other (Circle One) Sample Bottle							
Field Measurements Meter ID#)#	Field Measurements Read By: (initials)				
Time (24 hr.)	Surface Depth Collected (feet)	pH* (SU) 8 42	D.O.(mg./L)	D.O. (%) 81. 3	Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)	
Time (24 hr.)	Bottom Depth Collected (feet)	pH (SU)	D.O.(mg./L)	D.O. (%)	Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)	
	preserved sample: number es immediately placed on icc		ulfuric acid ad	ded in field to	o achieve pH o	f less than 2:	N/A Yes No	
WEATHER CONDITIONS: (circle) raining, clear, partly cloudy, windy								
PERSONNEL	ON SITE: Conney	Н.,	Jessie	ω.				
REMARKS:	Samp Water	frowing	g over	weir				

				STATION I	D:	Wal #	6
				LOCATION		A 1	
				DATE/TIME	-	11/21/23	1030
				ALL TIMES	-	ETZ or (circle	CTZ
WATERE (Cin	cle One) (colle Small	Stream	n middle of ope		Large River	oles at selected l	
	(colle	ct samples in	n representative	e area)	(collect samp	les in representa	tive area)
TOTAL W (Average of STREAM WATER L	ATER DEPTH: of 2 measurements) (Circle One if FLOW: applicable)	Lo	w Norm	within Banks		epth:t conditions Other	, o (feet)
	(Circle One)			le Bottle	Dipper		
eld Measure	ments	Meter II) #		Field Meas Read By:		
me (24 hr.) 1030	Surface Depth Collected (feet)	pH* (SU) 9.28	D.O.(mg./L)	D.O. (%)	Temp (°C)	Conductivity (µmhos/cm) 300.8	Turbidity (NTU)
me (24 hr.)	Bottom Depth Collected (feet)	pH (SU)	D.O.(mg./L)	D.O. (%)	Temp (°C)	Conductivity (µmhos/cm)	Turbidity (NTU)
100	preserved sample: number es immediately placed on ice	0.50	ulfuric acid add	led in field to	achieve pH o	f less than 2:	N/A (Yes) No
	NDITIONS: (circle) raining,						
RSONNEL O	N SITE: Oona	YH,	Jess.e.	w			
MARKS:	Samale colle	CHed	a high				

second Lisk Usibility : 3,5 A

Reason for Inspection: Routine Scheduled

Inspection Date: 2024-01-29

Prepared for:

Miromar Lakes CDD 10160 Miromar Lakes Blvd. Fort Myers, Florida 33913

Prepared by:

Bailey Hill, Aquatic Specialist

FORT MYERS FIELD OFFICE SOLITUDELAKEMANAGEMENT.COM 888.480. LAKE (5253)

	Waterway Inspection Report	2024-01-2
TA	ABLE OF CONTENTS	
		Pg
SITE ASSESSMENTS		
PONDS 1A 1B 1C		3
PONDS 2A 3A 3B		4
PONDS 3C 6A 6B		5
PONDS 6C 6D 6E		6
PONDS 6F 6G 6H		7
PONDS 6I 6J 6K		8
PONDS 6L 6M 6N		9
PONDS 60 6P 6R		10
PONDS 5/6-1 5/6-2 5/6-3		11
PONDS 5/6-4		12
	Υ	
SITE MAP		14, 15

888.480.Lake (5253)

2024-01-29

Site: 1A

Comments:

Normal growth observed

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels. Some minor growth of chara observed, continue to monitor and treat as needed.

Action Required:

Re-inspect next visit

Target:

Muskgrass

Site: 1B

Comments:

Site looks good

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels.

Action Required:

Routine maintenance next visit

Target:

Species non-specific

Site: 1C

Comments:

Site looks good

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels.

Action Required:

Routine maintenance next visit

Target:

Species non-specific

888.480.LAKE (5253)

2024-01-29

Site: 2A

Comments:

Normal growth observed

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels. Minor surface algae observed in the littorals, monitor and treat as needed.

Action Required:

Routine maintenance next visit

Target:

Surface algae

Site: 3A

Comments:

Site looks good Shoreline is well maintained.

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels.

Action Required:

Routine maintenance next visit

Target:

Species non-specific

Site: 3B

Comments:

Site looks good

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels.

Action Required:

Routine maintenance next visit

Target:

Species non-specific

2024-01-29

Site: 3C

Comments:

Site looks good Shoreline is well maintained. Algae and submersed are at controlled levels.

Action Required:

Routine maintenance next visit

Target:

Species non-specific

Site: 6A

Comments:

Normal growth observed

Continue to spot treat growth in the littorals. Algae and submersed are controlled.

Action Required:

Routine maintenance next visit

Target:

Shoreline weeds

Site: 6B

Comments:

Site looks good

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels.

Action Required:

Routine maintenance next visit

Target:

Species non-specific

SOLITUDE LAKE MANAGEMENT888.480.LAKE (5253)

5

2024-01-29

Site: 6C

Comments:

Site looks good

Shoreline is well maintained. Algae and submersed are at controlled levels.

Action Required:

Routine maintenance next visit

Target:

Species non-specific

Site: 6D

Comments:

Site looks good

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels.

Action Required:

Routine maintenance next visit

Target:

Species non-specific

Site: 6E

Comments:

Normal growth observed

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels. Some algae around the perimeter, monitor and treat as needed.

Action Required:

Routine maintenance next visit

SOLITUDE LAKE MANAGEMENT

Target:

Surface algae

2024-01-29

Site: 6F

Comments:

Treatment in progress

Shoreline weeds are dying off from treatment. Will follow up to determine if additional treatment is needed. Thalia is beginning to go dormant due to colder weather.

Action Required:

Routine maintenance next visit

Target:

Shoreline weeds

Site: 6G

Comments:

Requires attention

Littorals need selective treatment for torpedograss and vines. Treatment for hydrilla was effective. Surface algae has improved.

Action Required:

Routine maintenance next visit

Target:

Shoreline weeds

Site: 6H

Comments:

Normal growth observed

Spot treat torpedograss and pennywort in littorals. Algae and submersed vegetation are at levels.

Action Required:

Routine maintenance next visit

Target:

Shoreline weeds

888.480.LAKE (5253)

2024-01-29

Site: 6I

Comments:

Normal growth observed

Spot treat torpedograss growth. Cattails along preserve were effectively treated. Thalia is browning and beginning to go dormant due to colder weather.

Action Required:

Routine maintenance next visit

Target:

Shoreline weeds

Site: ^{6J}

Comments:

Requires attention

Grasses have shown improvement since last inspection, western corner needs additional treatment. Needs treatment for baby tears in southern end.

Action Required:

Re-inspect next visit

Target:

Submersed vegetation

Site: 6K

Comments:

Normal growth observed

Water sprite was effectively treated. Patches of torpedograss outside of the littorals will need to be treated by boat. Algae and submersed are controlled.

Action Required:

Routine maintenance next visit

Target:

Torpedograss

SOLITUDE LAKE MANAGEMENT

2024-01-29

Site: 6L

Comments:

Requires attention

Needs treatment for torpedograss in open areas. Some algae observed in the littorals, monitor and treat as needed.

Action Required:

Re-inspect next visit

Target:

Torpedograss

Site: 6M

Comments:

Requires attention

Littorals need selective treatment for torpedograss and pennywort. Algae and submersed vegetation are at controlled levels. Dye application was effective.

Action Required:

Routine maintenance next visit

Target:

Shoreline weeds

Comments:

Normal growth observed

Shoreline is well maintained, some torpedograss around the perimeter appears to be dying off. Minimal algae in littorals, overall dye application was effective.

Action Required:

Routine maintenance next visit

Target:

Torpedograss

1-800-432-4302

2024-01-29

Site: 60

Comments:

Normal growth observed

Treatment for shoreline weeds was effective. New native beneficial recruitment observed. Continue to observe improvements.

Action Required:

Re-inspect next visit

Target:

Shoreline weeds

Site: 6P

Comments:

Normal growth observed

Shoreline is well maintained. Minimal growth noted. Algae and submersed vegetation are at controlled levels. Dye application continues to be effective.

Action Required:

Routine maintenance next visit

Target:

Shoreline weeds

Site: 6R

Comments:

Requires attention

Littorals need to spot treated for torpedograss and vines. Treatment for planktonic algae was effective. Continue to monitor and treat as needed.

Action Required:

Re-inspect next visit

Target: Shoreline weeds

Aquatic Systems. Inc.

1-800-432-4302

2024-01-29

Site: 5/6-1

Comments:

Normal growth observed

Shoreline is well maintained, spot treat minimal growth. Algae and submersed vegetation are at controlled levels.

Action Required:

Routine maintenance next visit

Target:

Shoreline weeds

Site: 5/6-2

Comments:

Site looks good

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels.

Action Required:

Routine maintenance next visit

Target:

Species non-specific

Site: 5/6-3

Comments:

Site looks good

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels.

Action Required:

Routine maintenance next visit

Target:

Species non-specific

SOLITUDE LAKE MANAGEMENT

Site: 5/6-4

Comments:

Site looks good

Shoreline is well maintained. Algae and submersed vegetation are at controlled levels. Some growth of valisneria observed around the perimeter.

Action Required:

Routine maintenance next vis

Target:

Species non-specific

Management Summary

Observations and Action Items:

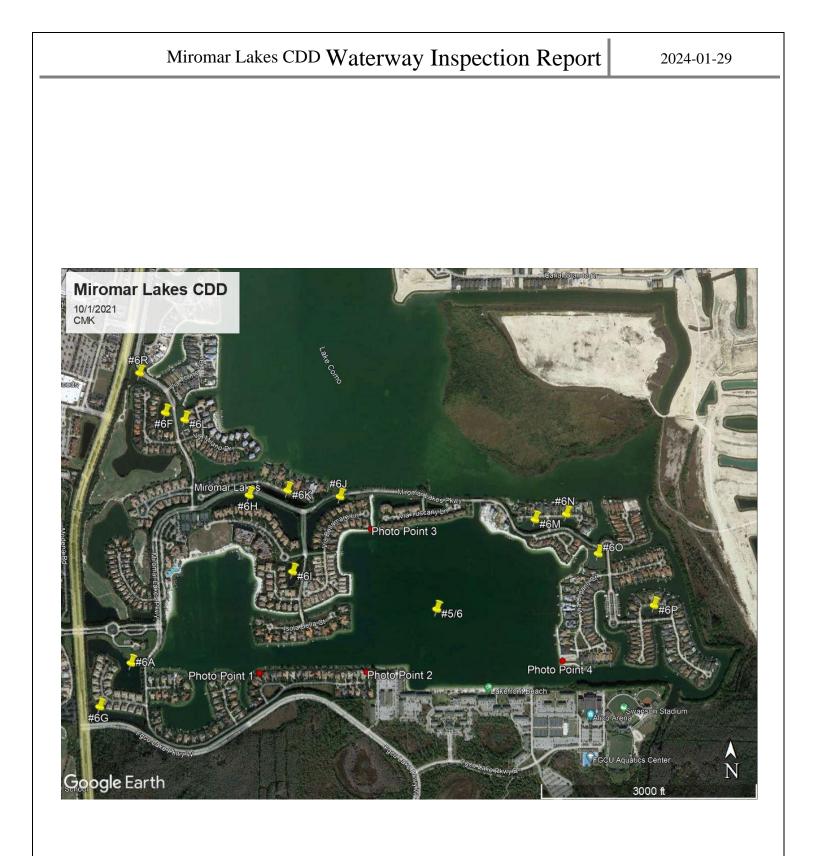
- Overall the lakes are in good condition. The golf course is well maintained and only minor algae accumulation was observed. Lakes 6F, 6J, 6G, 6L, 6M, and 6R in the CDD need attention for shoreline weeds. Targets include: torpedograss, vines, and pennywort. Submersed growth was minimal overall with the exception of the larger lake. Most of the work conducted this month focused on Lake Como.

- Dye applications in lake 6G, 6F, 6M, 6N, and 6P were effective. No planktonic algae blooms were observed during this inspection.

- Now that the season has transitioned out of the summer/rainy season it is likely that the littorals will begin to enter into winter dormancy. This is triggered by lower temperatures, less rain and/or sunlight. There may be an increase in brown coloration and a thinning of littorals during this time. This is a normal part of the littoral life cycle, dormancy usually lasts until the spring.

- The next quality control report will be due April 2024. A section for lakes 3D and 3E will be included in the next report.

- 3D has received multiple treatments for the gulf spikerush. The technician will continue to treat the gulf spikerush every two weeks until control is gained.


- 3E needs additional treatment for shoreline weeds in the littorals. Sonar treatment to target submersed vegetation will be conducted in March.

Miromar Lakes CDD

Waterway Inspection Report

2024-01-29

Site	Comments	Target	Action Required
1A	Normal growth observed	Muskgrass	Re-inspect next visit
1B	Site looks good	Species non-specific	Routine maintenance next visit
1C	Site looks good	Species non-specific	Routine maintenance next visit
2A	Normal growth observed	Surface algae	Routine maintenance next visit
3A	Site looks good	Species non-specific	Routine maintenance next visit
3B	Site looks good	Species non-specific	Routine maintenance next visit
3C	Site looks good	Species non-specific	Routine maintenance next visit
6A	Normal growth observed	Shoreline weeds	Routine maintenance next visit
6B	Site looks good	Species non-specific	Routine maintenance next visit
6C	Site looks good	Species non-specific	Routine maintenance next visit
6D	Site looks good	Species non-specific	Routine maintenance next visit
6E	Normal growth observed	Surface algae	Routine maintenance next visit
6F	Treatment in progress	Shoreline weeds	Routine maintenance next visit
6G	Requires attention	Shoreline weeds	Routine maintenance next visit
6H	Normal growth observed	Shoreline weeds	Routine maintenance next visit
6I	Normal growth observed	Shoreline weeds	Routine maintenance next visit
6J	Requires attention	Submersed vegetation	Re-inspect next visit
6K	Normal growth observed	Torpedograss	Routine maintenance next visit
6L	Requires attention	Torpedograss	Re-inspect next visit
6M	Requires attention	Shoreline weeds	Routine maintenance next visit
6N	Normal growth observed	Torpedograss	Routine maintenance next visit
6O	Normal growth observed	Shoreline weeds	Re-inspect next visit
6P	Normal growth observed	Shoreline weeds	Routine maintenance next visit
6R	Requires attention	Shoreline weeds	Re-inspect next visit
5/6-1	Normal growth observed	Shoreline weeds	Routine maintenance next visit
5/6-2	Site looks good	Species non-specific	Routine maintenance next visit
5/6-3	Site looks good	Species non-specific	Routine maintenance next visit
5/6-4	Site looks good	Species non-specific	Routine maintenance next visit

2024-01-29

SOLitude Lake Management

888.480.Lake (5253)

MEMO

To: Board of Supervisors

From: James P. Ward

Date: January 9, 2023

Re: Commission on Ethics newly established Electronic Financial Disclosure Management System ("EFDMS") website registration, Financial Disclosure Forms, and Ethics Training.

Beginning January 1, 2024, the Florida Commission on Ethics has enacted new procedures for electronic filing of Financial Disclosure forms for Public Officials, as a means of submitting Forms and updating your Filer contact information.

To access the newly established Electronic Financial Disclosure Management System ("EFDMS"), visit the login page (<u>https://disclosure.floridaethics.gov/Account/Login</u>) and watch the instructional video for directions on how to register/confirm registration.

If you have filed a Form 1 before, click "I am a Filer" and follow the prompts.

Instructions, FAQs, and tutorials are available from the dashboard within EFDMS. Additional assistance can be obtained Monday-Friday from 8:00 a.m. until 5:00 p.m. by contacting the Commission directly.

Financial disclosure forms are due on or before July 1, 2024 for the preceding calendar year. A grace period is in effect until September 1. If the disclosure is not filed or postmarked by September 1, an automatic fine of \$25 per day will begin to accrue and will continue to build until the disclosure is filed, or the fine reaches \$1,500.

If you have an annual filing requirement AND will be running for office as a qualified elector in November, then you will need to complete your disclosure in EFDMS and submit your filing electronically to the Commission, then print a verification/receipt for e-filing your form or print a copy of your disclosure to file with your Qualifying Officer packet.

It is imperative that each filer take the time to confirm their registration on the EFDMS site, in order to ensure that the Florida Commission on Ethics has updated and correct contact information. All communication about filing requirements and due dates for filers will be provided via email <u>only</u>. Filers MUST maintain a current email address in EFDMS. By law, failure to maintain a current email address will not qualify as an "unusual circumstance" during an appeal of an automatic fine for failure to timely file a Form.

If the annual form is not submitted via the electronic filing system created and maintained by the Florida Commission on Ethics by September 3, 2024, an automatic fine of \$25 for each day late will be imposed, up to a maximum penalty of \$1,500. Failure to file also can result in removal from public office [s. 112.3145, F.S.]. In addition, failure to make any required disclosure constitutes grounds for and may be punished by one or more of the following: disqualification from being on the ballot, impeachment, removal or suspension from office, or a civil penalty not exceeding \$10,000. [s. 112.317, F.S.].

Also beginning January 1, 2024, all elected local officers of independent special districts, including any person appointed to fill a vacancy on an elected special district board, whose service began on or before March 31st of the year for which you are filing, are now required to complete four (4) hours of Ethics Training each calendar year which addresses Article II, Section 8 of the Florida Constitution, the Code of Ethics for Public Officers and Employees, and the Public Records and Open Meetings laws of the State. You are required to certify on this form that you have taken such training.

There is a check box on the Form 1 for Constitutional officers, elected Municipal Officers, and others to certify that they completed the required training. The training is a calendar year requirement and corresponds to the form year.

Constitutional officers elected Municipal Officers, and others should keep track of all ethics training they complete. Please do not send Certificates of Completion or letters verifying that you have received such training; the Commission does not track officers' completed hours. Officials may take training from any source they choose. Options to complete this training are available on the Commissions website: https://www.ethics.state.fl.us/Training/Training.aspx.

As always, if you have any questions regarding this information, please feel free to contact me directly at 954-658-4900.

MIROMAR LAKES COMMUNITY DEVELOPMENT DISTRICT

FINANCIAL STATEMENTS - JANUARY 2024

FISCAL YEAR 2024

PREPARED BY:

JPWARD & ASSOCIATES, LLC, 2301 NORTHEAST 37TH STREET, FORT LAUDERDALE, FL 33308 T: 954-658-4900 E: JimWard@JPWardAssociates.com JPWard and Associates, LLC Community Development District Advisors

Miromar Lakes Community Development District

Table of Contents

Balance Sheet – All Funds	1
Statement of Revenue, Expenditures and Changes in Fund Balance	
General Fund	2-4
Debt Service Fund Series 2015 Series 2022	5 6

JPWard & Associates, LLC

2301 NORTHEAST 37 STREET FORT LAUDERDALE, FLORIDA 33308

Miromar Lakes Community Development District Balance Sheet for the Period Ending January 31, 2024

Assets Cash and Investments General Fund - Invested Cash \$ Debt Service Fund Interest Account Sinking Account Reserve Account Revenue Prepayment Account Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Account Receivable Assessments Receivable Assessments Receivable Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Due to Other Funds General Fund Debt Service Fund(s) Total Assets Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Due to Other Funds \$ General Fund Debt Service Fund(s) Outer other Funds \$	General Fund 1,896,479 - - - - - - - - - - - - - - - - - - -	Series 2012 \$ - - - -		rvice Funds es 2015 - -		ies 2022	Capital Projects Fund Series 2022	Genera	Account al Long 1 Debt	t Groups General Fixe Assets	Tot d (Memor On	
Assets Cash and Investments General Fund - Invested Cash \$ Debt Service Fund Interest Account Sinking Account Reserve Account Revenue Prepayment Account Escrow Fund Account Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Due to Other Funds General Fund Due to Other Funds General Fund Due to Other Funds General Fund Due to Other Funds				es 2015 - -		ies 2022	Series 2022					randum
Assets Cash and Investments General Fund - Invested Cash \$ Debt Service Fund Interest Account Sinking Account Reserve Account Revenue Prepayment Account Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Due to Other Funds General Fund Due to Other Funds General Fund Due to Other Funds General Fund Due to Other Funds General Fund Due to Other Funds			\$	-	Ś							
Cash and Investments General Fund - Invested Cash \$ Debt Service Fund Interest Account Sinking Account Reserve Account Revenue Prepayment Account Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Due to Other Funds General Fund Due to Other Funds Senteral Fund Due to Other Funds Senteral Fund Due to Other Funds Senteral Fund Due to Other Funds	1,896,479 - - - - - - -	\$ - - - -	\$	-	Ś							<u>, </u>
General Fund - Invested Cash \$ Debt Service Fund Interest Account Sinking Account Reserve Account Revenue Prepayment Account Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets S Due to Other Funds General Fund Debt Service Fund(s)	1,896,479 - - - - - -	\$ - - - -	\$	-	\$							
Debt Service Fund Interest Account Sinking Account Reserve Account Revenue Prepayment Account Escrow Fund Account Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accounts Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Due to Other Funds General Fund Debt Service Fund(s) \$ Due to Other Funds General Fund Debt Service Fund(s)		· - -		-		-	Ś -	Ś	-	Ś -	\$ 1,8	396,479
Interest Account Sinking Account Reserve Account Revenue Prepayment Account Escrow Fund Account Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Due to Other Funds General Fund Debt Service Fund(s)	-	-			·	-	· _		-			
Sinking Account Reserve Account Revenue Prepayment Account Escrow Fund Account Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accounts Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Due to Other Funds General Fund Debt Service Fund(s) \$	- - -	-				0	-		-			(
Reserve Account Revenue Prepayment Account Escrow Fund Account Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accounts Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Due to Other Funds General Fund Debt Service Fund(s)	-	-		-		0	-		-			C
Revenue Prepayment Account Escrow Fund Account Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Due to Other Funds General Fund Debt Service Fund(s)	- -			452,250		-	-		-		- 4	152,250
Prepayment Account Escrow Fund Account Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities General Fund Debt Service Fund(s)	-	-		842,460		809,717			-			52,177
Escrow Fund Account Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities \$ Due to Other Funds General Fund Debt Service Fund(s)	-	_					_				- 1,0	52,177
Construction Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets Succounts Payable & Payroll Liabilities General Fund Debt Service Fund(s)	-			-		-	-		-		-	
Cost of Issuance Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets Liabilities Accounts Payable & Payroll Liabilities General Fund Debt Service Fund(s)		-		-		-	-		-		-	
Due from Other Funds General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities \$ Due to Other Funds General Fund Debt Service Fund(s)	-	-		-		-	-		-		-	
General Fund Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets Sublities Accounts Payable & Payroll Liabilities Sue to Other Funds General Fund Debt Service Fund(s)	-	-		-		-	-		-		-	
Debt Service Fund(s) Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities \$ Due to Other Funds General Fund Debt Service Fund(s)												
Market Valuation Adjustments Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities \$ Due to Other Funds General Fund Debt Service Fund(s)	-	-		-		-	-		-		-	
Accrued Interest Receivable Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities Due to Other Funds General Fund Debt Service Fund(s)				-		-	-		-		-	
Assessments Receivable Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities \$ Due to Other Funds General Fund Debt Service Fund(s)	-	-		-		-	-		-		-	
Accounts Receivable Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities \$ Due to Other Funds General Fund Debt Service Fund(s)	-	-		-		-	-		-		-	
Amount Available in Debt Service Funds Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities \$ Due to Other Funds General Fund Debt Service Fund(s)	-	-		-		-	-		-		-	
Amount to be Provided by Debt Service Funds Investment in General Fixed Assets (net of depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities Due to Other Funds General Fund Debt Service Fund(s)	-	-		-		-	-		-		-	
Investment in General Fixed Assets (net of depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities Due to Other Funds General Fund Debt Service Fund(s)	-	-		-		-	-	2,	,104,428		- 2,1	104,428
depreciation) Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities Due to Other Funds General Fund Debt Service Fund(s)	-	-		-		-	-	13,	,520,572		- 13,5	520,572
Total Assets \$ Liabilities Accounts Payable & Payroll Liabilities Due to Other Funds General Fund Debt Service Fund(s)												
Liabilities Accounts Payable & Payroll Liabilities \$ Due to Other Funds General Fund Debt Service Fund(s)	-	-		-		-	-		-	36,514,91	7 36,5	514,917
Accounts Payable & Payroll Liabilities \$ Due to Other Funds General Fund Debt Service Fund(s)	1,896,479	\$-	\$ 1,	,294,710	\$	809,717	\$-	\$ 15,	,625,000	\$ 36,514,91	.7 \$ 56,1	40,823
Accounts Payable & Payroll Liabilities \$ Due to Other Funds General Fund Debt Service Fund(s)												
Due to Other Funds General Fund Debt Service Fund(s)												
General Fund Debt Service Fund(s)	-	\$-	\$	-	\$	-	\$-	\$	-	\$	- \$	
Debt Service Fund(s)												
	-	-		-		-	-		-		-	
Other Developer	-	-		-		-	-		-		-	
	-	-		-		-	-		-		-	
Bonds Payable												
Current Portion - Series 2012	-	-		-		-	-		0			
Current Portion - Series 2015	-	-					-		510,000		- 5	510,000
Current Portion - Series 2022	-	-				-			635,000			535,000
Long Term - Series 2012									033,000		- 0	55,000
-	-	-		-		-	-				- 0.1	40.000
Long Term - Series 2015	-	-		-		-	-		3,140,000			40,000
Long Term - Series 2022	-	<u>_</u>	- <u>-</u>	-	<u> </u>		-		5,340,000	<u> </u>		340,000
Total Liabilities	-	\$ -	\$	<u> </u>	\$		\$-	\$ 15,	,625,000	\$	- \$ 15,6	25,000
Fund Equity and Other Credits												
Investment in General Fixed Assets	-	-		-		-	-		-	36,514,91	.7 36,5	514,917
Fund Balance	-	-		-		-	-		-		-	
Restricted												
Beginning: October 1, 2023 (Unaudited)	-	690,801		965,334		164,130	-		-		- 1,8	320,26
Results from Current Operations	-	(690,801)		329,376		645,587	-		-			
Unassigned		. , - ,										
Beginning: October 1, 2023 (Unaudited)	1,050,708	-		-		-	-		-		-	
Allocation of Fund Balance	_,0,.00											
System-Wide Reserves	753,682										- 7	753,68
Reserve For First Three Months Operations		-		-		-	-		-			
	297,025	-		-		-	-		-			297,02
Results of Current Operations	845,771	- -	- <u>-</u> -	-	<u> </u>	-	- ¢			6 36 544 5		45,77
Total Fund Equity and Other Credits	1,896,479	\$ 0	\$ 1,	,294,710	\$	809,717	\$-	\$	-	\$ 36,514,91	.7 \$ 40,5	15,82
Total Liabilities, Fund Equity and Other Credits	1,896,479	\$ 0	\$ 1,	,294,710	\$	809,717	\$-	\$ 15,	625,000	\$ 36,514,91	.7 \$ 56,1	40.00

Miromar Lakes Community Development District General Fund Statement of Revenues, Expenditures and Changes in Fund Balance Through January 31, 2024

Description	October	November	December	January	Year to Date	Total Annual Budget - 1,007,091 181,010 - 1,007,091 181,010 - 1,007,091 181,010 - - 1,000 918 42,000 4,500 - 18,000 1,000 - 1,000 - 1,200 9,300 - 1,300 250 - 300 8,100	% of Budget
Revenue and Other Sources							
Carryforward	\$-	\$-	\$-	\$-	-	-	N/A
Interest							
Interest - General Checking	-	-	-	-	-	-	N/A
Special Assessment Revenue							
Special Assessments - On-Roll	2,741	220,479	616,438	38,200	877,857	1,007,091	87%
Special Assessments - Off-Roll	45,253	-	-	45,253	90,505	181,010	50%
Miscellaneous Revenue	-	-	-	-	-	-	N/A
Easement Encroachments	-	-	-	-	-	-	N/A
Intragovernmental Transfer In		-	-	-	-	-	N/A
Total Revenue and Other Sources:	\$ 47,993	\$ 220,479	\$ 616,438	\$ 83,452	968,362	\$ 1,188,102	82%
Expenditures and Other Uses							
Legislative							
Board of Supervisor's - Fees	1,000	1,000	1,000	1,000	4,000	12,000	33%
Board of Supervisor's - Taxes	77	77	77	77	306	918	33%
Executive							
Professional Management	3,500	3,500	3,500	3,500	14,000	42,000	33%
Financial and Administrative							
Audit Services	-	-	3,800	-	3,800	4,500	84%
Accounting Services	-	-	750	750	1,500	-	N/A
Assessment Roll Services	1,500	1,500	9,750	750	13,500	18,000	75%
Arbitrage	-	-	500	-	500	1,000	50%
Bond Re-amortization	-	-	-	-	-	-	N/A
Other Contractual Services							
Legal Advertising	-	-	252	-	252	1,200	21%
Trustee Services	-	-	-	-	-	9,300	0%
Dissemination	-	-	-	-	-	-	N/A
Bond Amortization Schedules	-	-	-	-	-	-	N/A
Property Appraiser/Tax Collector Fees	-	1,291	-	-	1,291	1,300	99%
Bank Services	-	-	-	-	-	250	0%
Travel and Per Diem	-	-	-	-	-	-	N/A
Communications & Freight Services							
Postage, Freight & Messenger	70	362	70	250	752	300	251%
Insurance	17,300	-	-	-	17,300	8,100	214%
Printing & Binding	-	-	-	-	-	300	0%
Website Maintenance	-	-	-	-	-	1,200	0%
Office Supplies	-	-	-	-	-	-	N/A
Subscription & Memberships	-	175	-	-	175	175	100%
Legal Services							
Legal - General Counsel	-	215	508	-	723	18,000	4%
Legal - Encroachments	-	-	-	-	-	-	N/A
Other General Government Services							
Engineering Services - General Services	-	-	-	833	833	7,000	12%
Asset Maps/Cost Estimates	-	-	-	-	-	-	N/A

Miromar Lakes Community Development District General Fund Statement of Revenues, Expenditures and Changes in Fund Balance Through January 31, 2024

cription	October	November	December	January	Year to Date	Total Annual Budget	% of Budge
Asset Administrative Services	-	833	833	390	2,057	10,000	21%
Reserve Analysis	-	-	-	-	-	-	N/A
Encroachment Agreements	-	-	-	-	-	-	N/A
Contingencies	-	-	-	-	-	-	N/A
Sub-Total:	23,447	8,952	21,040	7,550	60,989	135,543	45%
Stormwater Management Services							
Professional Services							
Asset Management	-	3,833	3,833	3,833	11,500	46,000	25%
NPDES	-	1,551	-	-	1,551	3,500	44%
Mitigation Monitoring	-	-	-	-	-	-	N/A
Stormwater Management Services							
Water MGT - Debris Removal	-				-	-	N/A
Utility Services							
Electric - Aeration Systems	299	539	579	603	2,020	5,000	40%
Repairs & Maintenance							
Lake System							
Aquatic Weed Control	-	5,350	-	5,350	10,700	80,000	13%
Lake Bank Maintenance	-	735	-	-	735	2,500	29%
Water Quality Testing	-	-	4,660	-	4,660	19,000	25%
Water Control Structures	-	9,000	-	-	9,000	28,000	329
Grass Carp Installation	-	-		-	-	-	N/A
Litoral Shelf Barrier/Replanting	-	-	-	-	-	-	N/A
Cane Toad Removal	-	3,200	2,900	2,800	8,900	37,000	24%
Midge Fly Control	-	-	-	723	723	35,000	2%
Aeration System	-	804	-	-	804	8,000	10%
Fish Re-Stocking	-	695	-	-	695	98,000	1%
Contingencies	-				-	15,375	0%
Wetland System							
Routine Maintenance	-	3,607	-	3,607	7,214	54,000	13%
Water Quality Testing	-	-	-	-	-	-	N/A
Contingencies	-				-	2,700	0%
Capital Outlay							
Aeration Systems	-	-	-	-	-	-	N/A
Littortal Shelf Replanting/Barrier	-	-	-	-	-	-	N/A
Lake Bank Restoration	-	900	-	250	1,150	108,500	1%
Turbidity Screens	-	-	-	-	-	-	N/A
Erosion Restoration	-	-	600	600	1,200	-	N/A
Video Stormwater Pipes/Repairs	-	250	250	250	750	52,000	1%
Contingencies	-	-	-	-	-	-	N/A
Sub-Total:	299	30,465	12,823	18,016	61,602	594,575	10%
Other Current Charges							
Hendry County - Panther Habitat Taxes	-	-	-	-	-	-	N/A
Payroll Expenses	-	_	_	_	_		N/A

Prepared by: JPWARD and Associates, LLC

Miromar Lakes Community Development District General Fund Statement of Revenues, Expenditures and Changes in Fund Balance Through January 31, 2024

Description	October	November	December	January	Year to Date	Total Annual Budget	% of Budget
Capital/Operations	-	-	-	-	-	417,700	0%
Sub-Total:	-	-	-	-	-	417,700	0%
Total Expenditures and Other Uses:	\$ 23,746	\$ 39,417	\$ 33,862	\$ 25,566	\$ 122,591	\$ 1,147,818	11%
Net Increase/ (Decrease) in Fund Balance	24,248	181,062	582,575	57,886	845,771	40,284	
Fund Balance - Beginning	1,050,708	1,074,955	1,256,017	1,838,593	1,050,708	1,050,708	
Fund Balance - Ending	\$ 1,074,955	\$ 1,256,017	\$ 1,838,593	\$ 1,896,479	1,896,479	\$ 1,090,991	

Miromar Lakes Community Development District Debt Service Fund - Series 2015 Bonds Statement of Revenues, Expenditures and Changes in Fund Balance Through January 31, 2024

Description	0	ctober	N	ovember	D	ecember		January	Ye	ar to Date		tal Annual Budget	% of Budget
Revenue and Other Sources													
Carryforward	\$	-	\$	-	\$	-	\$	-		-	\$	-	N/A
Interest Income													
Reserve Account		1,836		1,903		1,848		1,909		7,497		12,000	62%
Interest Account		-		-		-		-		-		-	N/A
Sinking Fund Account		-		-		-		-		-		-	N/A
Prepayment Account		-		-		-		-		-		-	N/A
Revenue Account		2,070		2,175		1,302		2,536		8,082		20	40411%
Special Assessment Revenue													
Special Assessments - On-Roll		1,615		129,922		363,250		22,510		517,297		593,699	87%
Special Assessments - Off-Roll		-		-		-		-		-		325,534	0%
Special Assessments - Prepayments		-		-		-		-		-		-	N/A
Net Inc (Dec) Fair Value Investments		-		-		-		-		-		-	N/A
Operating Transfers In (From Other Funds)		-		-		-		-		-		-	N/A
Bond Proceeds		-		-		-		-		-		-	N/A
Total Revenue and Other Sources:	\$	5,520	\$	134,000	\$	366,400	\$	26,955	\$	532,876	\$	931,253	N/A
Expenditures and Other Uses													
Debt Service													
Principal Debt Service - Mandatory													
Series 2015 Bonds		-		-		-		-		-	\$	510,000	0%
Principal Debt Service - Early Redemptions													
Series 2015 Bonds		-				-		-		-		-	N/A
Interest Expense													
Series 2015 Bonds		-		203,500		-		-		203,500		407,250	50%
Original Issue Discount		-		-		-		-		-			N/A
Operating Transfers Out (To Other Funds)		-		-		-		-		-		-	N/A
Total Expenditures and Other Uses:	\$	-	\$	203,500	\$	-	\$	-		203,500	\$	917,250	N/A
Net Increase/ (Decrease) in Fund Balance		5,520		(69,500)		366,400		26,955		329,376		14,003	
Fund Balance - Beginning		965,334		970,854		901,355		1,267,755		965,334		-	
Fund Balance - Ending	Ś	970,854	\$	901,355	Ś	1,267,755	ć	1,294,710		1,294,710	Ś	14,003	

Miromar Lakes Community Development District Debt Service Fund - Series 2022 Bonds Statement of Revenues, Expenditures and Changes in Fund Balance Through January 31, 2024

Description	0	ctober	N	ovember	D	ecember		January	Ye	ar to Date		tal Annual Budget	% of Budget
Revenue and Other Sources													
Carryforward	\$	-	\$	-	\$	-	\$	-		-	\$	-	N/A
Interest Income													
Reserve Account		-		-		-		-		-		-	N/A
Interest Account		0		0		-		-		0		-	N/A
Sinking Fund Account		-		-		-		-		-		-	N/A
Prepayment Account		-		-		-		-		-		-	N/A
Revenue Account		701		749		362		2,152		3,963		-	N/A
Escrow Fund Account		-		-		-		-		-		-	N/A
Special Assessment Revenue													
Special Assessments - On-Roll		2,266		182,285		509,652		31,582		725,786		833,182	87%
Special Assessments - Off-Roll		-		-		-		-		-		-	N/A
Special Assessments - Prepayments		-		-		-		-		-		-	N/A
Net Inc (Dec) Fair Value Investments		-		-		-		-		-		-	N/A
Operating Transfers In (From Other Funds)		-		-		-		-		-		-	N/A
Total Revenue and Other Sources:	\$	2,967	\$	183,034	\$	510,014	\$	33,734	\$	729,749	\$	833,182	N/A
Expenditures and Other Uses													
Debt Service													
Principal Debt Service - Mandatory													
Series 2022 Bonds		-		-		-		-		-	\$	635,000	N/A
Principal Debt Service - Early Redemptions													
Series 2022 Bonds		-		-		-		-		-		-	N/A
Interest Expense													
Series 2022 Bonds		-		84,162		-		-		84,162		168,324	N/A
Original Issue Discount		-		-		-		-		-		-	N/A
Operating Transfers Out (To Other Funds)		-		-		-		-		-		-	N/A
Total Expenditures and Other Uses:	\$	-	\$	84,162	\$	-	\$	-		84,162	\$	803,324	N/A
Net Increase/ (Decrease) in Fund Balance		2,967		98,872		510,014		33,734		645,587		29,858	
Fund Balance - Beginning		164,130		167,097		265,969		775,983		164,130		-	
Fund Balance - Ending	Ś	167,097	\$	265,969	\$	775,983	¢	809,717		809,717	Ś	29,858	